MATH 2311 Section 7.4.

Slides:



Advertisements
Similar presentations
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 7-1 Chapter 7 Confidence Interval Estimation Statistics for Managers.
Advertisements

Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Basic Business Statistics 10 th Edition.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 Introduction to Statistics: Chapter 8 Estimation.
Chapter 8 Estimation: Single Population
Confidence Intervals: Estimating Population Mean
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Business Statistics, A First Course.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 7-1 Chapter 7 Confidence Interval Estimation Statistics for Managers.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Confidence Interval Estimation
Chapter 6 Confidence Intervals.
© 2002 Thomson / South-Western Slide 8-1 Chapter 8 Estimation with Single Samples.
Confidence Intervals (Chapter 8) Confidence Intervals for numerical data: –Standard deviation known –Standard deviation unknown Confidence Intervals for.
LECTURE 17 THURSDAY, 2 APRIL STA291 Spring
Chapter 8 Estimation Nutan S. Mishra Department of Mathematics and Statistics University of South Alabama.
Confidence Intervals Chapter 6. § 6.1 Confidence Intervals for the Mean (Large Samples)
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 8-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Confidence Intervals for Population Proportions
CHAPTER SIX Confidence Intervals.
1 Chapter 6 Estimates and Sample Sizes 6-1 Estimating a Population Mean: Large Samples / σ Known 6-2 Estimating a Population Mean: Small Samples / σ Unknown.
Chap 7-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 7 Estimating Population Values.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 8-1 Confidence Interval Estimation.
Section 7-3 Estimating a Population Mean: σ Known.
Chap 7-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 7 Estimating Population Values.
Statistics for Business and Economics 8 th Edition Chapter 7 Estimation: Single Population Copyright © 2013 Pearson Education, Inc. Publishing as Prentice.
Confidence Intervals Population Mean σ 2 Unknown Confidence Intervals Population Proportion σ 2 Known Copyright © 2013 Pearson Education, Inc. Publishing.
Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall
CONFIDENCE INTERVALS.
Chapter 11: Estimation of Population Means. We’ll examine two types of estimates: point estimates and interval estimates.
Inference for the Mean of a Population Section 11.1 AP Exam Registration Deadline: March 17 th Late Fee ($50): March 18 th – March 24 th Financial Aid.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 8-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 7-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Chapters 6 & 7 Overview Created by Erin Hodgess, Houston, Texas.
Estimating a Population Mean. Student’s t-Distribution.
Confidence Intervals for a Population Mean, Standard Deviation Unknown.
Confidence Intervals Chapter 6. § 6.1 Confidence Intervals for the Mean (Large Samples)
Section 8.3 Estimating Population Means (Small Samples) HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2008 by Hawkes Learning Systems/Quant.
+ Z-Interval for µ So, the formula for a Confidence Interval for a population mean is To be honest, σ is never known. So, this formula isn’t used very.
Many times in statistical analysis, we do not know the TRUE mean of a population on interest. This is why we use sampling to be able to generalize the.
MATH Section 7.4 Pt. 2. Recall: Look at the following example: The effect of exercise on the amount of lactic acid in the blood was examined.
MATH Section 7.5.
Topic 12 Sampling Distributions. Sample Proportions is determined by: = successes / size of sample = X/n If you take as SRS with size n with population.
Chapter 8 Confidence Intervals Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Chapter 8 Confidence Interval Estimation Statistics For Managers 5 th Edition.
MATH Section 7.2.
Chapter 7 Estimation. Chapter 7 ESTIMATION What if it is impossible or impractical to use a large sample? Apply the Student ’ s t distribution.
CHAPTER 8 Estimating with Confidence
Confidence Intervals and Sample Size
Chapter Eight Estimation.
Chapter 7 Confidence Interval Estimation
Chapter 6 Inferences Based on a Single Sample: Estimation with Confidence Intervals Slides for Optional Sections Section 7.5 Finite Population Correction.
Confidence intervals for m when s is unknown
Introduction to Estimating Population Means
Chapter 6 Confidence Intervals.
Practice For an SAT test  = 500  = 100
Inferences Based on a Single Sample
MATH 2311 Section 7.4.
MATH 2311 Section 7.4.
Ch. 8 Estimating with Confidence
MATH 2311 Section 7.4.
Confidence Intervals for a Population Mean, Standard Deviation Known
Chapter 6 Confidence Intervals.
Warmup To check the accuracy of a scale, a weight is weighed repeatedly. The scale readings are normally distributed with a standard deviation of
MATH 2311 Section 7.2.
8.3 Estimating a Population Mean
Chapter 8 Estimation: Single Population
MATH 2311 Section 7.5.
Chapter 7 Estimation: Single Population
Business Statistics For Contemporary Decision Making 9th Edition
MATH 2311 Section 7.4.
MATH 2311 Section 7.5.
Presentation transcript:

MATH 2311 Section 7.4

Confidence Interval for a Population Mean

So, what is t*?

How do we find critical values for a t-distribution? Look at the online text book, under appendices. Degrees of freedom are on the left and the top end (1-confidence level/2) are given at the top.

Assumptions:

Changes is the Confidence Interval: The following will cause an increase in the width of the confidence interval: An increase in the Margin of Error An increase in the Standard Deviation (σ or s). An increase in the Confidence Level. A decrease in the Sample Size. Note: Changes in the sample mean ( 𝑥 ) will affect the center of the interval but will have no effect on the interval width.

Examples:

Popper 26 You select a sample of 50 people with a mean height of 72 inches from a population that has a standard deviation of 3 inches. 1. What would the margin of error be for a 95% confidence interval? 0.698 b. 0.832 c. 16.748 d. 1.644 2. What is the width of confidence interval? 1.396 b. 0.349 c. 1.66 d. 0.415 3. What is the confidence interval? a. [71.17, 72.83] b. [69.43, 75.11] c. [72.41, 75.21] d. [47.31, 53.65]

Popper 26 Continued: 4. Give an interpretation of this interval: A randomly selected person from the population has a 95% chance being within the interval. There is a 95% chance that the population mean will fall within the interval. If numerous similar samples are selected, 95% of them will contain the population mean. All of these choices 2 of the choices a, b or c. What will cause the width of the confidence interval to increase? decrease n b. decrease confidence level c. decrease standard deviation d. increase the mean

Examples:

t-score table:

t-score table: Since n = 16, we are going to use the value for n – 1 = 15 degrees of freedom. Since we want a confidence level of 90%, we will use an “Upper Tail Probability” of (1 – 0.90)/2 = 0.05. This is to account for only using one tail end of our graph, rather than 2. Our t* value will be 1.7531.

Using Rstudio and TI to calculate t* In Rstudio: qt(1.##/2,df) so for a 90% confidence interval with a sample size of 16: qt(1.90/2,15) In TI 84 (this command does not appear in TI 83) Under the DIST menu, select InvT area: 1.90/2 df: 15

Confidence Interval Calculation:

Look at the following example: The effect of exercise on the amount of lactic acid in the blood was examined in an article for an exercise and sport magazine. Eight males were selected at random from those attending a week-long training camp. Blood lactate levels were measured before and after playing three games of racquetball, as shown in the accompanying table. Use this data to estimate the mean increase in blood lactate level using a 95% confidence interval.

Values to cut and paste: assign(“before”,c(13,20,17,13,13,16,15,16)) assign(“after”,c(18,37,40,35,30,20,33,19))

Interpretation of the Confidence Interval:

Example: A 95% confidence interval for the mean of a population is to be constructed and must be accurate to within 0.3 unit. A preliminary sample standard deviation is 2.9. Find the smallest sample size n that provides the desired accuracy.

When to use z* or t*? Use z* if: the question involved proportions you are given standard deviation of the population (σ). you are asked to find sample size. Use t* if: you are not provided with standard deviation of population. (you may be given standard deviation of your sample or given data to calculate standard deviation.)

Is it a z* or a t*? You wish to determine the confidence interval for the mean water salinity in a certain town. Preliminary studies have shown that water salinity is normally distributed with a standard deviation of 0.03. You select a sample of 25 households, and determine that the mean water salinity is 18 parts per thousand, with a standard deviation of 0.04. Construct the 90% confidence interval for the mean of water salinity.

Is it z* or t*? In a sample of 50 examinees, you have determined the mean score to be 87 with a standard deviation of 2. Determine the 95% confidence interval for the mean score of the population.

Is it t* or z*? You are designing a study to determine the interaction between sugar intake and insomnia. To do this, you wish to construct a sample of subjects that will have large amounts of sugar prior to bed and measure the duration of their sleep. Preliminary studies show that this will have a standard deviation of 0.5 hours. What size interval must be used to have a margin of error of no more than 1 hour?

Popper 27: A group of 10 students are comparing exam scores for a test they recently took. Based on these results, you want to find out, with 90% confidence, what range of grades you can expect to receive. Exam Scores: 70, 75, 80, 87, 90, 90, 93, 94, 96, 100 1. What is the sample mean? a. 90 b. 87.5 c. 80 d. 91.6 2. What is the sample standard deviation? a. 9.62 b. 92.5 c. 5.65 d. 13.83 3. What is the t* value that can be used here? a. 1.3722 b. 1.3968 c. 1.8331 d. 1.6449 4. What is the margin of error? a. 5.58 b. 5.00 c. 4.03 d. 6.12 5. What is the confidence interval? a. [70,100] b. [87.5, 100] c. [85.67, 89.33] d. [81.92, 93.08]