Biotechnology Part 1 Genetics of Viruses

Slides:



Advertisements
Similar presentations
Viruses: A Borrowed Life
Advertisements

Ch. 19 Viruses Objective: EK 3.C.3: Viral replication results in genetic variation, and viral infection can introduce genetic variation into the hosts.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Viruses (Ch. 18).
21_03 Lytic and lysogenic cycles Slide number: 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. capsid nucleic.
Viruses, part 2.
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Lecture 29: Viruses 0.5 m.
Viruses: a kind of “borrowed life” HIV infected T-cell.
Scene from the 1918 influenza pandemic.. Scene from the 2003 SARS Scare.
Chapter 19: viruses.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure
If it is not alive, We can’t kill it -- We can only wish to contain it!
Viral Life Cycles & Viruses
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
The Genetics of Viruses
Chapter 19 Viruses. Microbial Model Systems Are viruses living organisms? –Maybe The origins of molecular biology lie in early studies of viruses that.
Viruses Gene Regulation results in differential Gene Expression, leading to cell Specialization.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Viruses. Nonliving particles Very small (1/2 to 1/100 of a bacterial cell) Do not perform respiration, grow, or develop Are able to replicate (only with.
Viruses Living or Not ???????. Characteristics of Viruses Among the smallest biological particles that are capable of causing diseases in living organisms.
Chapter 19 Viruses. Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings I. Discovery Tobacco mosaic disease - stunts growth.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses lead “a kind of borrowed life” between.
Viruses. Relative sizes  Viruses are one of the smallest biological structures known  Between 20 and 50 nanometers in size.  The average animal cell.
Genetics of Viruses.
Fig µm Chapter 19. Fig RESULTS 12 3 Extracted sap from tobacco plant with tobacco mosaic disease Passed sap through a porcelain filter.
Fig µm Chapter 19. Fig (a) The 1918 flu pandemic (b) Influenza A H5N1 virus (c) Vaccinating ducks 0.5 µm.
Virus es Big Idea 3: Living systems store, retrieve, transmit, and respond to info essential to life processes.
Viruses. Nonliving particles Very small (1/2 to 1/100 of a bacterial cell) Do not perform respiration, grow, or develop Are able to replicate (only with.
Fig µm Chapter 19 - Viruses. Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses.
Chapter 18.1 & 18.4 The Genetics of Viruses and Bacteria.
Chapter 19.  Non-living ◦ Non-cellular ◦ Cannot grow or reproduce on its own ◦ No metabolism  Cause disease ◦ AIDS, colds, flu, measles, mono  Cause.
Viral Replication EK 3C3: Viral replication results in genetic variation and viral infection can introduce genetic variation into the hosts.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Viral and Bacterial Genetics Chapter 18. Overview Comparison Figure  m.
Two Cycles and A Bit of Review Remember that viruses are not able to reproduce on their own. They rely on a ‘host cell’ for reproduction In the Lytic Cycle.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Art Slides for Biology, Seventh Edition Neil Campbell and.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Biotechnology Part 1 Genetics of Viruses
Chapter Viruses In 1883, A. Mayer discovered that the sap extracted from tobacco plants infected with tobacco mosaic disease.
Chapter 19: Viruses.
Viruses.
Viruses and Bacteria Chapter 17 & 24
Fig Figure 19.1 Are the tiny viruses infecting this E. coli cell alive? 0.5 µm.
Headings Vocab Important Info
Chapter 19 Viruses.
The Genetics of Viruses
Chapter 19 Viruses.
Chapter 19 Viruses.
Virus Notes Tobacco Mosaic Virus T4 Bacteriophage Influenza Virus.
Viruses.
Chapter 19 Viruses.
Viruses.
Chapter 19 Viruses VIRUS Entry and uncoating DNA Capsid Transcription
Viruses Ch 18 Big Idea 3: Living systems store, retrieve, transmit, and respond to info essential to life processes.
Viruses.
Viruses Are obligate intracellular parasites
Chapter 15 Viruses, Viral Life Cycles, Retroviruses.
Viruses Chapter 19.
Biotechnology Part 1 Genetics of Viruses
Virus Structure and Method of Invasion
Arianna K. Olivia J. Willow G.
Fig Chapter 19: VIRUS Figure 19.1 Are the tiny viruses infecting this E. coli cell alive? 0.5 µm.
Gene Regulation results in differential Gene Expression, leading to cell Specialization Viruses
Viruses.
Viruses.
Virus A pathogen that consists of a Nucleic Acid – (DNA or RNA) wrapped in a Protein Coat- (Capsid). Classification: Classified by the host Bacteriophage.
Viruses.
Presentation transcript:

Biotechnology Part 1 Genetics of Viruses AP Biology Biotechnology Part 1 Genetics of Viruses

Virus “size”

Viral Structure

Glycoprotein Viral envelope Capsid RNA (two identical strands) Reverse . Glycoprotein Viral envelope Capsid RNA (two identical strands) Reverse transcriptase

How the envelope was acquired.

Bacteriophage

Viral Reproduction

Lytic Viral Life cycle Attachment Entry of phage DNA and degradation of host DNA Phage assembly Release Head Tails Tail fibers Assembly Synthesis of viral genomes and proteins

Lysogenic Viral Life Cycle Phage DNA The phage attaches to a host cell and injects its DNA. Daughter cell with prophage Many cell divisions produce a large population of bacteria infected with the prophage. Phage DNA circularizes Phage Bacterial chromosome Occasionally, a prophage exits the bacterial chromosome, initiating a lytic cycle. Lytic cycle Lysogenic cycle Certain factors determine whether The bacterium reproduces normally, copying the prophage and transmitting it to daughter cells. The cell lyses, releasing phages. Lytic cycle is induced or Lysogenic cycle is entered Prophage New phage DNA and proteins are synthesized and assembled into phages. Phage DNA integrates into the bacterial chromosomes, becoming a prophage.