Samuel Cheng Slide credits: Noah Snavely

Slides:



Advertisements
Similar presentations
Multiscale Analysis of Images Gilad Lerman Math 5467 (stealing slides from Gonzalez & Woods, and Efros)
Advertisements

Image Interpolation CS4670: Computer Vision Noah Snavely.
15-463: Computational Photography Alexei Efros, CMU, Spring 2010 Most slides from Steve Marschner Sampling and Reconstruction.
Ted Adelson’s checkerboard illusion. Motion illusion, rotating snakes.
Slides from Alexei Efros
CS 691 Computational Photography
Computational Photography: Sampling + Reconstruction Connelly Barnes Slides from Alexei Efros and Steve Marschner.
Computational Photography CSE 590 Tamara Berg Filtering & Pyramids.
Filtering CSE P 576 Larry Zitnick
Sampling, Aliasing, & Mipmaps
Image Filtering, Part 2: Resampling Today’s readings Forsyth & Ponce, chapters Forsyth & Ponce –
Convolution, Edge Detection, Sampling : Computational Photography Alexei Efros, CMU, Fall 2006 Some slides from Steve Seitz.
Sampling and Pyramids : Rendering and Image Processing Alexei Efros …with lots of slides from Steve Seitz.
Edges and Scale Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection Szeliski – From Sandlot ScienceSandlot.
Lecture 2: Edge detection and resampling
Image transformations, Part 2 Prof. Noah Snavely CS1114
Image Sampling Moire patterns
Lecture 3: Edge detection, continued
CSCE 641 Computer Graphics: Fourier Transform Jinxiang Chai.
Lecture 4: Image Resampling CS4670: Computer Vision Noah Snavely.
Convolution. Convolution Properties Commutative: f*g = g*f Associative: (f*g)*h = f*(g*h) Homogeneous : f*( g)= f*g Additive (Distributive): f*(g+h)=
Lecture 3: Image Resampling CS4670: Computer Vision Noah Snavely Nearest-neighbor interpolation Input image 3x upsample hq3x interpolation (ZSNES)
CPSC 641 Computer Graphics: Fourier Transform Jinxiang Chai.
Computational Photography: Fourier Transform Jinxiang Chai.
Slides from Alexei Efros, Steve Marschner Filters & fourier theory.
Image Sampling Moire patterns -
Fourier Analysis : Rendering and Image Processing Alexei Efros.
Recap from Friday Pinhole camera model Perspective projections Lenses and their flaws Focus Depth of field Focal length and field of view.
Image Sampling CSE 455 Ali Farhadi Many slides from Steve Seitz and Larry Zitnick.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5409 T-R 10:30am – 11:50am.
Applications of Image Filters Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 02/04/10.
Image Resampling CS4670: Computer Vision Noah Snavely.
Image Resampling CS4670: Computer Vision Noah Snavely.
Image Processing Xuejin Chen Ref:
Lecture 4: Image Resampling and Reconstruction CS4670: Computer Vision Kavita Bala.
Image Processing Edge detection Filtering: Noise suppresion.
Lecture 3: Edge detection CS4670/5670: Computer Vision Kavita Bala From Sandlot ScienceSandlot Science.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5403 T-R 3:00pm – 4:20pm.
CS559: Computer Graphics Lecture 4: Compositing and Resampling Li Zhang Spring 2008.
Lecture 5: Image Interpolation and Features
Brent M. Dingle, Ph.D Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout Image Processing.
Lecture 5: Fourier and Pyramids
Projects Project 1a due this Friday Project 1b will go out on Friday to be done in pairs start looking for a partner now.
Last Lecture photomatix.com. Today Image Processing: from basic concepts to latest techniques Filtering Edge detection Re-sampling and aliasing Image.
Recall: Gaussian smoothing/sampling G 1/4 G 1/8 Gaussian 1/2 Solution: filter the image, then subsample Filter size should double for each ½ size reduction.
Antialiasing. What is alias? Alias - A false signal in telecommunication links from beats between signal frequency and sampling frequency (from dictionary.com)
Image Resampling & Interpolation
Linear Filtering – Part II
Many slides from Steve Seitz and Larry Zitnick
Image Sampling Moire patterns
Image transformations
Gonzalez & Woods, and Efros)
Image transformations
Computer Vision Jia-Bin Huang, Virginia Tech
Fourier Transform Analytic geometry gives a coordinate system for describing geometric objects. Fourier transform gives a coordinate system for functions.
Fourier Transform Analytic geometry gives a coordinate system for describing geometric objects. Fourier transform gives a coordinate system for functions.
Image Sampling Moire patterns
Jeremy Bolton, PhD Assistant Teaching Professor
Multiscale Analysis of Images
More Image Manipulation
CSCE 643 Computer Vision: Thinking in Frequency
Samuel Cheng Slide credits: Noah Snavely
Image Processing Today’s readings For Monday
Filtering Part 2: Image Sampling
Linear filtering.
Image Sampling Moire patterns
Lecture 5: Resampling, Compositing, and Filtering Li Zhang Spring 2008
Oh, no, wait, sorry, I meant, welcome to the implementation of 20th-century science fiction literature, or a small part of it, where we will learn about.
Image Resampling & Interpolation
Resampling.
Presentation transcript:

Samuel Cheng Slide credits: Noah Snavely Resampling Samuel Cheng Slide credits: Noah Snavely

Tentative presentation schedule Date Location # presentations March 5 Norman 2 March 7 March 12 March 14 March 26 Tulsa 1 Title and abstract due: Feb 21 Speaker schedule TBD: next Tuesday

Image Scaling This image is too big to fit on the screen. How can we generate a half-sized version? Source: S. Seitz

Image sub-sampling 1/8 1/4 Throw away every other row and column to create a 1/2 size image - called image sub-sampling Source: S. Seitz

Image sub-sampling 1/2 1/4 (2x zoom) 1/8 (4x zoom) Why does this look so crufty? Source: S. Seitz

Image sub-sampling Source: F. Durand

Even worse for synthetic images Source: L. Zhang

Aliasing Occurs when your sampling rate is not high enough to capture the amount of detail in your image Can give you the wrong signal/image—an alias To do sampling right, need to understand the structure of your signal/image Enter Monsieur Fourier… To avoid aliasing: sampling rate ≥ 2 * max frequency in the image said another way: ≥ two samples per cycle This minimum sampling rate is called the Nyquist rate Source: L. Zhang

Nyquist limit – 2D example Good sampling Bad sampling

Aliasing When downsampling by a factor of two How can we fix this? Original image has frequencies that are too high How can we fix this?

Gaussian pre-filtering Solution: filter the image, then subsample Source: S. Seitz

Subsampling with Gaussian pre-filtering Solution: filter the image, then subsample Source: S. Seitz

Compare with... 1/2 1/4 (2x zoom) 1/8 (4x zoom) Source: S. Seitz

Upsampling This image is too small for this screen: How can we make it 10 times as big? Simplest approach: repeat each row and column 10 times (“Nearest neighbor interpolation”)

Image interpolation Recall how a digital image is formed d = 1 in this example 1 2 3 4 5 Recall how a digital image is formed It is a discrete point-sampling of a continuous function If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale Adapted from: S. Seitz

Image interpolation Recall how a digital image is formed d = 1 in this example 1 2 3 4 5 Recall how a digital image is formed It is a discrete point-sampling of a continuous function If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale Adapted from: S. Seitz

Image interpolation What if we don’t know ? Guess an approximation: 1 d = 1 in this example 1 2 2.5 3 4 5 What if we don’t know ? Guess an approximation: Can be done in a principled way: filtering Convert to a continuous function: Reconstruct by convolution with a reconstruction filter, h Adapted from: S. Seitz

DSP perspective

Image interpolation “Ideal” reconstruction Nearest-neighbor interpolation Linear interpolation Gaussian reconstruction Source: B. Curless

Reconstruction filters What does the 2D version of this hat function look like? performs linear interpolation (tent function) performs bilinear interpolation Often implemented without cross-correlation E.g., http://en.wikipedia.org/wiki/Bilinear_interpolation Better filters give better resampled images Bicubic is common choice Cubic reconstruction filter

Image interpolation Original image: x 10 Nearest-neighbor interpolation Bilinear interpolation Bicubic interpolation

DSP Interpretation ↑

Image resampling ↑ ↓ Upsampling downsampling

Questions?

Gaussian pyramid … F0 F0 H * F1 F1 H * F2 blur subsample blur

{ … F0 F0 H * Gaussian pyramid F1 F1 H * F2 blur subsample blur

Gaussian pyramids [Burt and Adelson, 1983] In computer graphics, a mip map [Williams, 1983] A precursor to wavelet transform Gaussian Pyramids have all sorts of applications in computer vision Source: S. Seitz

Gaussian pyramids [Burt and Adelson, 1983] How much space does a Gaussian pyramid take compared to the original image? Source: S. Seitz

Gaussian Pyramid