AGT 関係式(1) Gaiotto の議論 (String Advanced Lectures No.18)

Slides:



Advertisements
Similar presentations
Analysis of QCD via Supergravity S. Sugimoto (YITP) based on hep-th/ (T. Ibaraki + S.S.) Windows to new paradigm in particle Sendai.
Advertisements

 Symmetries and vanishing couplings in string-derived low-energy effective field theory              Tatsuo Kobayashi 1.Introduction.
Toward M5-branes from ABJM action Based on going project with Seiji Terashima (YITP, Kyoto U. ) Futoshi Yagi (YITP, Kyoto U.)
On d=3 Yang-Mills-Chern- Simons theories with “fractional branes” and their gravity duals Ofer Aharony Weizmann Institute of Science 14 th Itzykson Meeting.
Calabi-Yau compactifications: results, relations & problems
Brane Tilings and New Horizons Beyond Them Calabi-Yau Manifolds, Quivers and Graphs Sebastián Franco Durham University Lecture 2.
Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,
Instantons in Deformed Supersymmetric Gauge Theories Shin Sasaki (University of Helsinki) Based on the work [hep-th/ JHEP 07 (2007) 068 ] [hep-th/ ,
Summing planar diagrams
Construction of BPS Solitons via Tachyon Condensation So RIKEN based on the work with T. Asakawa and K. Ohta hep-th/0603***
String Theory A picture book.
Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
Massive type IIA string theory cannot be strongly coupled Daniel L. Jafferis Institute for Advanced Study 16 November, 2010 Rutgers University Based on.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
Anomaly cancellations on heterotic 5-branes ( 前編 ) 矢田 雅哉.
ASYMPTOTIC STRUCTURE IN HIGHER DIMENSIONS AND ITS CLASSIFICATION KENTARO TANABE (UNIVERSITY OF BARCELONA) based on KT, Kinoshita and Shiromizu PRD
A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:
3rd International Workshop On High Energy Physics In The LHC Era.
AGT 関係式とその一般化に向け て (String Advanced Lectures No.22) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 7 月 5 日(月) 14:00-15:40.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
Supersymmetry and Gauge Symmetry Breaking from Intersecting Branes A. Giveon, D.K. hep-th/
Planar diagrams in light-cone gauge hep-th/ M. Kruczenski Purdue University Based on:
Meta-stable Vacua in SQCD and MQCD David Shih Harvard University K. Intriligator, N. Seiberg and DS hep-th/ I. Bena, E. Gorbatov, S. Hellerman,
Electric-Magnetic Duality On A Half-Space Edward Witten Rutgers University May 12, 2008.
Field Theory: The Past 25 Years Nathan Seiberg (IAS) The Future of Physics October, 2004 A celebration of 25 Years of.
AGT 関係式 (1) Gaiotto の議論 (String Advanced Lectures No.18) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 2 日(水) 12:30-14:30.
Guido Cossu 高エネルギ加速器研究機構 Lattice Hosotani mechanism on the lattice o Introduction o EW symmetry breaking mechanisms o Hosotani mechanism.
ADE Matrix Models in Four Dimensional QFT DK, J. Lin arXiv: , ``Strings, Matrices, Integrability’’ Paris, August 19, 2014.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
AGT 関係式 (4) AdS/CFT 対応 (String Advanced Lectures No.21) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 30 日(水) 12:30-14:30.
Supersymmetric Quantum Field and String Theories and Integrable Lattice Models Nikita Nekrasov Integrability in Gauge and String Theory Workshop Utrecht.
AGT 関係式 (3) 一般化に向け て (String Advanced Lectures No.20) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 23 日(水) 12:30-14:30.
AGT 関係式とその一般化に向け て (Towards the generalization of AGT relation) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 (Shotaro Shiba) S. Kanno, Y. Matsuo, S.S. and.
Multi-quark potential from AdS/QCD based on arXiv: Wen-Yu Wen Lattice QCD.
LLM geometries in M-theory and probe branes inside them Jun-Bao Wu IHEP, CAS Nov. 24, 2010, KITPC.
Matrix Models and Matrix Integrals A.Mironov Lebedev Physical Institute and ITEP.
Meta-stable Supersymmetry Breaking in Spontaneously Broken N=2 SQCD Shin Sasaki (Univ. of Helsinki) [hep-th/ (M.Arai, C.Montonen, N.Okada and.
Gauge invariant Lagrangian for Massive bosonic higher spin field Hiroyuki Takata Tomsk state pedagogical university(ТГПУ) Tomsk, Russia Hep-th
AGT 関係式 (2) AGT 関係式 (String Advanced Lectures No.19) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 9 日(水) 12:30-14:30.
Bethe ansatz in String Theory Konstantin Zarembo (Uppsala U.) Integrable Models and Applications, Lyon,
Holography of Wilson-loop expectation values with local operator insertions Akitsugu Miwa ( Univ. of Tokyo, Komaba ) work in collaboration with Tamiaki.
Meta-stable Supersymmetry Breaking in an N=1 Perturbed Seiberg-Witten Theory Shin Sasaki (Univ. of Helsinki, Helsinki Inst. of Physics) Phys. Rev. D76.
Maximal super Yang-Mills theories on curved background with off-shell supercharges 総合研究大学院大学 藤塚 理史 共同研究者: 吉田 豊 氏 (KEK), 本多 正純 氏 ( 総研大 /KEK) based on M.
2011 年 4 月 27 日 1 吉田豊 Y. Yoshida arXiv: [hep-th]
The nonperturbative analyses for lower dimensional non-linear sigma models Etsuko Itou (Osaka University) 1.Introduction 2.The WRG equation for NLσM 3.Fixed.
Seiberg Duality James Barnard University of Durham.
Multiple M5-branes' theory with Lie 3-algebra 高エネルギー加速器研究機構 素粒子原子核研究 所 柴 正太郎 2010 年 12 月 17 日 (共同研究者 : 本間 良則 氏、小川 盛郎 氏)
B.-H.L, R. Nayak, K. Panigrahi, C. Park On the giant magnon and spike solutions for strings on AdS(3) x S**3. JHEP 0806:065,2008. arXiv: J. Kluson,
GEOMETRIC DESCRIPTION OF THE STANDARD MODEL Kang-Sin CHOI Ewha Womans University SUSY 14, University of Manchester June 22, 2014 Based on
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
CERNTR, 16 February 2012 Non-perturbative Physics from String Theory Dr. Can Kozçaz, CERN.
Electic-Magnetic Duality On A Half-Space Edward Witten March 9, 2008.
Equivariant A-twisted GLSM and Gromov-Witten invariants
Large N Phase Transitions in massive N = 2 Gauge Theories
Takaaki Nomura(Saitama univ)
Supersymmetry Breaking Vacua in Geometrically Realized Gauge Theories
Localization and Supersymmetric Entanglement Renyi entropy
Magnetic Monopoles and the Homotopy Groups
Exact Results in Massive N=2 Theories
Chiral Algebra and BPS Spectrum of Argyres-Douglas theories
Late-time Cosmology with String Gases
PHYS 5326 – Lecture #19 Wrapping up the Higgs Mechanism
StringMath2018, Tohoku Univ. June 20, 2018
European String Workshop, April 12, 2018
Lecture 11 Spontaneous Symmetry Breaking
Hyun Seok Yang Center for Quantum Spacetime Sogang University
Deformed Prepotential, Quantum Integrable System and Liouville Field Theory Kazunobu Maruyoshi  Yukawa Institute.
Hysteresis Curves from 11 dimensions
高エネルギー加速器研究機構(KEK) 素粒子原子核研究所(IPNS) 柴 正太郎 2010年8月4日(水) 13:00-15:00
Spontaneous symmetry breaking.
Presentation transcript:

AGT 関係式(1) Gaiotto の議論 (String Advanced Lectures No.18) 高エネルギー加速器研究機構(KEK) 素粒子原子核研究所(IPNS) 柴 正太郎 2010年6月2日(水) 12:30-14:30

Contents 1. Seiberg-Witten curve 2. SU(2) generalized quivers 3. SU(3) generalized quivers 4. SU(N) generalized quivers 5. Towards AGT relation

Seiberg-Witten curve 4-dim N=2 SU(2) supersymmetric gauge theory Low energy effective action (by Wilson’s renormalization : integration out of massive fields) prepotential potential for scalar field : energy scale classical 1-loop instanton : Higgs potential (which breaks gauge symmetry) This breakdown is parametrized by

Singular points of prepotential, Seiberg-Witten curve and S-duality The singular points of prepotential on u-plane By studying the monodromy of and , we can find that the prepotential has singular points. This can be described as These singular points means the emergence of new massless fields. This means that the prepotential must become a different form near a different singular point. ( S-duality) M-theory interpretation : singular points are intersection points of M5-branes. : Seiberg-Witten curve in [Witten ’97] u (VEV) : shift of color brane mass : shift of flavor brane coupling

SU(2) generalized quivers SU(2) gauge theory with 4 fundamental flavors (hypermultiplets) This theory is conformal. flavor symmetry SO(8) : pseudoreal representation of SU(2) gauge group S-duality group SL(2,Z) coupling const. : flavor : SO(8) ⊃ SO(4)×SO(4) ~ [SU(2)a×SU(2)b]×[SU(2)c×SU(2)d] : (elementary) quark : monopole : dyon

SU(2) gauge theory with massive fundamental hypermultiplets In the following, we consider, in particular, subgroup of S-duality without permutation of masses mass : VEV of vector multiplet (adjoint) scalar Then, there are three possible degeneration (i.e. weak coupling) limits of a sphere with four punctures (i.e. fundamentals).

SU(2)1×SU(2)2 gauge theory with fundamental and bifundamental flavors When each gauge group is coupled to 4 flavors, this theory is conformal. flavor symmetry ⊃ [SU(2)a×SU(2)b]×SU(2)e×[SU(2)c×SU(2)d] flavor sym. of bifundamental hyper. : Sp(1) ~ SU(2) i.e. real representation S-duality subgroup without permutation of masses When the gauge coupling of SU(2)2 vanishes or is very weak, we can discuss it in the same way as before for SU(2)1. The similar discussion goes for (1 2). That is, this subgroup consists of the permutation of five SU(2)’s. cf. Note that two SL(2,Z) full S-duality groups do not commute! Here, we analyze only the boundary of the gauge coupling moduli space.

SU(2)1×SU(2)2×SU(2)3 gauge theory with fund. and bifund. flavors (The similar discussion goes.) ■, ■ : weak : interchange

For more generalized SU(2) quivers : more gauge groups, loops… turn on/off a gauge coupling

Seiberg-Witten curve for quiver SU(2) gauge theories massless SU(2) case In this case, the Seiberg-Witten curve is of the form If we change the variable as , this becomes massless SU(2) n case or mass deformation The number of mass parameters is n+3, because of the freedom . VEV coupling where are the solutions of polynomial of z of (n-1)-th order divergent at punctures

SU(3) generalized quivers SU(3) gauge theory with 6 fundamental flavors (hypermultiplets) This theory is also conformal. flavor symmetry U(6) : complex rep. of SU(3) gauge group kind of S-duality group : Argyres-Seiberg duality [Argyres-Seiberg ’07] coupling const. : flavor : U(6) ⊃ [SU(3)×U(1)]×[SU(3)×U(1)] : weak coupling U(6) ⊃ SU(6)×U(1) ~ [SU(3)×SU(3)×U(1)]×U(1) SU(6)×SU(2) ⊂ E6 : infinite coupling of SU(3) theory Moreover, weakly coupled gauge group becomes SU(2) instead of SU(3) ! breakdown by VEV

Argyres-Seiberg duality for SU(3) gauge theory infinite coupling

SU(3)1×SU(3)2 gauge theory with fundamental and bifundamental flavors flavor symmetry of bifundamental Argyres-Seiberg duality

For more generalized SU(3) quivers : more gauge groups, loops… turn on/off a gauge coupling

Seiberg-Witten curve for SU(3) quiver gauge theories massless SU(3) n case massless SU(2)×SU(3) n-2×SU(2) case mass deformation massless : massive : The number of mass parameters is n+3, because of the freedom . In both cases, SW curve can be rewritten as ( ), but the order of divergence of is different from each other.

SU(N) generalized quivers Seiberg-Witten curve for massless SU(N) quiver gauge theories Seiberg-Witten curve in this case is of the form The variety of quiver gauge group where is reflected in the various order of divergence of   at punctures. For example…

Classification of punctures : divergence of massless SW curve at punctures SU(2) quiver case order of divergence : mass parameters : flavor symmetry : SU(2) SU(3) quiver case flavor symmetry : U(1) SU(3)

Classification of punctures : divergence of massless SW curve at punctures SU(3) quiver case corresponding puncture : SU(4) quiver case (and the natural analogy is valid for general SU(N) case)

Sorry, I write this on whiteboard… Seiberg-Witten curve for linear SU(N) quiver gauge theories quiver gauge group (as a quite general case) Seiberg-Witten curve (type of each puncture) Seiberg-Witten curve in a massive case (concrete form of equation) where , which corresponds the Young tableau at z=∞. Sorry, I write this on whiteboard…

Towards AGT relation AGT relation reveals the relation of 4-dim theory and SW curve concretely… 4-dim linear SU(2) quiver gauge theory : We can calculate the partition functions by Nekrasov’s formula. 2-dim conformal field theory on Seiberg-Witten curve : We calculate the correlation functions with vertex operators at punctures. AGT relation : Both functions correspond to each other. to be continued…