Leinamycin Biosynthesis Revealing Unprecedented Architectural Complexity for a Hybrid Polyketide Synthase and Nonribosomal Peptide Synthetase  Gong-Li.

Slides:



Advertisements
Similar presentations
Volume 13, Issue 6, Pages (June 2006)
Advertisements

Volume 16, Issue 10, Pages (October 2009)
Volume 15, Issue 7, Pages (July 2008)
Volume 15, Issue 2, Pages (February 2008)
Volume 17, Issue 4, Pages (April 2010)
Volume 17, Issue 4, Pages (April 2010)
Defensive Bacteriome Symbiont with a Drastically Reduced Genome
Volume 20, Issue 6, Pages (June 2013)
Volume 17, Issue 2, Pages (February 2010)
An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide  Cheng Wang, Shane.
Characterization and Genetic Manipulation of Peptide Synthetases in Pseudomonas aeruginosa PAO1 in Order to Generate Novel Pyoverdines  David F Ackerley,
Volume 20, Issue 9, Pages (September 2013)
Mechanism of Thioesterase-Catalyzed Chain Release in the Biosynthesis of the Polyether Antibiotic Nanchangmycin  Tiangang Liu, Xin Lin, Xiufen Zhou, Zixin.
Evidence for a Monomeric Structure of Nonribosomal Peptide Synthetases
Shuo Chen, Yongquan Xue, David H Sherman, Kevin A Reynolds 
Volume 19, Issue 2, Pages (February 2012)
Thomas Weber, Mohamed A Marahiel  Structure 
Melithiazol Biosynthesis
Volume 14, Issue 5, Pages (May 2007)
Volume 10, Issue 5, Pages (May 2003)
Identification and Characterization of the Lysobactin Biosynthetic Gene Cluster Reveals Mechanistic Insights into an Unusual Termination Module Architecture 
Kento Koketsu, Hiroki Oguri, Kenji Watanabe, Hideaki Oikawa 
Volume 17, Issue 10, Pages (October 2010)
Characterization of a Fungal Thioesterase Having Claisen Cyclase and Deacetylase Activities in Melanin Biosynthesis  Anna L. Vagstad, Eric A. Hill, Jason W.
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Volume 19, Issue 3, Pages (March 2012)
Skipping in a Hybrid Polyketide Synthase
Volume 12, Issue 12, Pages (December 2005)
Insights into Bacterial 6-Methylsalicylic Acid Synthase and Its Engineering to Orsellinic Acid Synthase for Spirotetronate Generation  Wei Ding, Chun.
Structure-Based Dissociation of a Type I Polyketide Synthase Module
Volume 22, Issue 2, Pages (February 2015)
Volume 7, Issue 11, Pages (November 2000)
Volume 10, Issue 11, Pages (November 2003)
Volume 10, Issue 5, Pages (May 2003)
Evidence for a Protein-Protein Interaction Motif on an Acyl Carrier Protein Domain from a Modular Polyketide Synthase  Kira J. Weissman, Hui Hong, Bojana.
Formation of functional heterologous complexes using subunits from the picromycin, erythromycin and oleandomycin polyketide synthases  Li Tang, Hong Fu,
Volume 15, Issue 5, Pages (May 2008)
Volume 11, Issue 7, Pages (July 2004)
Volume 20, Issue 11, Pages (November 2013)
Volume 7, Issue 10, Pages (October 2000)
Volume 20, Issue 6, Pages (June 2013)
Volume 8, Issue 1, Pages (January 2001)
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
Volume 7, Issue 6, Pages (June 2000)
Volume 11, Issue 10, Pages (October 2004)
Volume 9, Issue 2, Pages (February 2002)
Volume 15, Issue 8, Pages (August 2008)
Volume 15, Issue 6, Pages (June 2008)
Structural Basis for Phosphopantetheinyl Carrier Domain Interactions in the Terminal Module of Nonribosomal Peptide Synthetases  Ye Liu, Tengfei Zheng,
Engineered Biosynthesis of Geldanamycin Analogs for Hsp90 Inhibition
Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic  Meinan Lv, Junfeng Zhao, Zixin Deng,
Volume 13, Issue 3, Pages (March 2006)
Gerald Lackner, Markus Bohnert, Jonas Wick, Dirk Hoffmeister 
Volume 11, Issue 3, Pages (March 2004)
Volume 16, Issue 2, Pages (February 2009)
Volume 12, Issue 2, Pages (February 2005)
Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids  Peter A. Jordan,
Volume 22, Issue 8, Pages (August 2015)
Volume 7, Issue 2, Pages (February 2000)
Volume 7, Issue 2, Pages (February 2000)
Volume 14, Issue 6, Pages (June 2007)
Volume 18, Issue 8, Pages (August 2011)
Volume 15, Issue 7, Pages (July 2008)
Volume 8, Issue 7, Pages (July 2001)
Volume 12, Issue 3, Pages (March 2005)
Volume 11, Issue 1, Pages (January 2004)
Volume 12, Issue 3, Pages (March 2005)
Nonribosomal Biosynthesis of Fusaricidins by Paenibacillus polymyxa PKB1 Involves Direct Activation of a d-Amino Acid  Jingru Li, Susan E. Jensen  Chemistry.
Volume 13, Issue 3, Pages (March 2006)
Volume 16, Issue 6, Pages (June 2009)
Presentation transcript:

Leinamycin Biosynthesis Revealing Unprecedented Architectural Complexity for a Hybrid Polyketide Synthase and Nonribosomal Peptide Synthetase  Gong-Li Tang, Yi-Qiang Cheng, Ben Shen  Chemistry & Biology  Volume 11, Issue 1, Pages 33-45 (January 2004) DOI: 10.1016/j.chembiol.2003.12.014

Figure 1 Proposed Model for LNM Biosynthesis and Modular Organization of the LNM Hybrid NRPS-PKS Megasynthetase with the Discrete LnmG AT Enzyme Loading the Malonyl CoA Extender Units to All Six PKS Modules The structures in brackets are hypothetical. Color coding indicates the moiety of LNM that is of peptide (blue), polyketide (red), and other (black) origin. ACP, PCP, and AT and its proposed docking domains are shaded in red, blue, and green, respectively, to highlight the assembly-line mechanism for LNM biosynthesis. A green oval denotes an AT docking domain, and a question mark denotes a domain of unknown function. A, adenylation; ACP, acyl carrier protein; AT, acyltransferase; Cy, condensation/cyclization; DH, dehydratase; KR, ketoreductase; KS, ketosynthase; MT, methyltransferase; Ox, oxidation; TE, thioesterase. Chemistry & Biology 2004 11, 33-45DOI: (10.1016/j.chembiol.2003.12.014)

Figure 2 The Genetic Organization of the lnm Biosynthetic Gene Cluster Proposed functions for individual ORFs are summarized in Table 1. The color coding legend indicates the types of genes identified with the lnm cluster. Chemistry & Biology 2004 11, 33-45DOI: (10.1016/j.chembiol.2003.12.014)

Figure 3 Determination of the lnm Biosynthetic Gene Cluster Boundaries and HPLC Analysis of LNM Production by S. atroolivaceus Wild-Type and Recombinant Strains (A) Upstream boundary determination: I, LNM standard; II, wild-type S-140; III, SB3007 [Δorf(−13)]; IV, SB3008 [Δorf(−11)]; V, SB3009 [Δorf(−2)]; VI, SB3010 [Δorf(−1)]; VII, SB3011 (ΔlnmA). (B) Downstream boundary determination: I, wild-type S-140; II, SB3012 [Δorf(+6)]; III, SB3013 [Δorf(+4)]; IV, SB3014 [Δorf(+3)]; V, SB3015 [Δorf(+2)]; VI, SB3016 [Δorf(+1)]; VII, SB3017 (ΔlnmZ′); filled circles, LNM; open triangles, an unknown metabolite whose production is independent of LNM biosynthesis; filled diamond, a new metabolite accumulated by the ΔlnmA mutant. Chemistry & Biology 2004 11, 33-45DOI: (10.1016/j.chembiol.2003.12.014)

Figure 4 Functional Analysis of lnmQ in LNM Biosynthesis (A) Conserved motifs of LnmQ in comparison with other NRPS A domains. The conserved amino acids are in bold. LnmQ homologs (accession numbers in parentheses) are as follows: Ave-NRPS8 (BAB690421) from Streptomyces avermitilis, GrsA (AAB22346) from Bacillus subtilis, CssA (S41309) from Tolypocladium niveum, and HTS1 (Q01886) from Cochliobolus carbonum. (B) HPLC analysis of LNM production by S. atroolivaceus wild-type and recombinant strains. I, LNM standard; II, wild-type S-140; III, SB3018 (ΔlnmQ); IV, SB3020 (SB3018 harboring the lnmQ overexpression plasmid pBS3047). Filled circles, LNM; open triangles, an unknown metabolite whose production is independent of LNM biosynthesis. (C) The substrate selectivity-conferring code of LnmQ in comparison with codes for the D-Ala-specific A domains of CssA-A1 and HTS1-A3. The same and similar residues are highlighted in bold. Chemistry & Biology 2004 11, 33-45DOI: (10.1016/j.chembiol.2003.12.014)

Figure 5 Sequence Analysis of the LnmIJ PKSs (A) Phylogenetic analysis of the LnmI and LnmJ KSs and their homologs from other polyketide and hybrid peptide-polyketide biosynthetic gene clusters. KS-containing homologs (natural product/accession numbers in parentheses) are as follows: BlmVIII (bleomycin/AF210249), EposB (epothilone/AF217189), MtaD (myxothiazole/AF188287), McyC (microcystin/AF183408), NosB (nostopeptolide/AF204805), HMWP1 (yersiniabactin/af091251), PksK and PksP (unknown compound/AL009126), TA1 (TA antibiotic/AJ006977), DEBS1 (erythromycin/Q03131), PikAIV (pikromycin/AF079138), AveA3 (avermectin/AB032367), and RifA (rifamycin/AF040570). (B) Compilation of the core sequences of LnmI and LnmJ ACP domains as well as the discrete LnmL ACP. The invariant Ser and other conserved residues are in bold. Chemistry & Biology 2004 11, 33-45DOI: (10.1016/j.chembiol.2003.12.014)

Figure 6 Sequence Analysis of AT-less PKSs (A) Compilation of deduced amino acid sequences of AT docking domains from LnmI and LnmJ and other AT-less PKSs. PedF and PedH are AT-less PKSs from the pederin biosynthetic gene cluster (accession number AY059471), and MmpA, MmpB, and MmpD are AT-less PKSs from the mupirocin biosynthetic gene cluster (accession number AF318063). The conserved amino acid residues are highlighted in bold. (B) Diagram of homologous regions between the AT docking domain and the functional LnmG-AT domain. Regions containing the conserved active site of GHSxG and substrate binding motif of AFHS for a functional AT domain are absent in the AT docking domain. Chemistry & Biology 2004 11, 33-45DOI: (10.1016/j.chembiol.2003.12.014)