Gas Laws Chapter 10 CHEM140 February 2, 2005.

Slides:



Advertisements
Similar presentations
Kinetic Molecular Theory of Gases
Advertisements

Gas Laws Chapter 10 CHEM140 February 2, Elements that exist as gases at 25 0 C and 1 atmosphere.
Apparatus for Studying the Relationship Between
1 Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Gases Chapter 5 Become familiar with the definition and measurement of gas pressure.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
5-1 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10 Gases Lecture Presentation.
1 IB Topic 1: Quantitative Chemistry 1.4: Mass Relationships in Chemical Reactions  Solve problems involving the relationship between temperature,
Gases Part 1. Elements that exist as gases at 25 0 C and 1 atmosphere.
Gas Laws Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
Gases Kinetic Theory of Ideal Gas, Gas Laws & Equation Combined Gas Laws, Numerical value of R.
5-1 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Today’s Quiz What is a gas (in chemistry)? 2.Mention.
A Review Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
MOLAR VOLUME. molar volume What is the volume of a gas at STP, if it contains 10.4 moles? What is the volume of carbon dioxide gas (STP) if the.
Gas Laws Chapter 5. Gases assume the volume and shape of their containers. Gases are the most compressible state of matter. Gases will mix evenly and.
Chapter 10; Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Gas Laws. Elements that exist as gases at 25 0 C and 1 atmosphere.
Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 09Slide 1 Gases: Their Properties & Behavior 9.
Gases Chapter 5. Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
Gas Laws Chapter 10 CHEM140 February 2, Elements that exist as gases at 25 0 C and 1 atmosphere.
Gases Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
Gases Chap. 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint Lecture Robertson, Univ. of Missouri.
Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Gas Laws Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Congratulations….you’re almost there! We’re almost.
Gases & Kinetic Molecular Theory Kinetic molecular theory Gases Physical properties Temperature Pressure Boyles Law Charles Law Gay Lussacs Law Combined.
Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
Gas Laws Chapter 12. Gases assume the volume and shape of their containers. Gases are the most compressible state of matter. Gases will mix evenly and.
Chapter 10 Gases.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Gas laws By Mr. M.
Gases.
Gas Laws.
Gases.
Gases Courtesy of nearingzero.net.
States of Matter: Gases
PowerPoint Lecture Presentation by J
Chapter 11 Gas Laws.
Gas Law Group Activity (Print pages 2 and 3 back-to-back as worksheet) (Print the other sheets and place around the room) Group mathematicians with non-mathematicians.
Gases Chapter 5.
Gas Laws.
Chapter 5 Gases.
Chapter 10 Gases.
Lecture Presentation Chapter 10 Gases.
Gases Chapter 5 Become familiar with the definition and measurement of gas pressure. Learn the gas law and ideal gas equation. Understand the concept of.
Gas Laws Chapter 10 CHEM140 February 2, 2005.
Gases Kinetic Theory of Ideal Gas, Gas Laws & Equation Combined Gas Laws, Numerical value of R.
Kinetic Molecular Theory
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Gases Chapter 8.
NOTEBOOKS PINK PACKETS WHITE UNIT 7 PACKETS CALCULATORS
CHAPTER- 5: GASES Gas molecules in the wind provide the force to move these racing sailboats.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Boyle’s Law P α 1/V This means Pressure and Volume are INVERSELY PROPORTIONAL if moles and temperature are constant (do not change). For example, P goes.
Gas Laws Robert Boyle Jacques Charles Amadeo Avogadro
Gas Laws Chapter 10 CHEM140 February 2, 2005.
Gases Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Gas Laws Chapter 14.
Copyright©2000 by Houghton Mifflin Company. All rights reserved.
CHE101 Gases Instructor: HbR.
No, it’s not related to R2D2
AP Chemistry D. Paskowski
Chapter 10; Gases.
Presentation transcript:

Gas Laws Chapter 10 CHEM140 February 2, 2005

Elements that exist as gases at 250C and 1 atmosphere

Physical Characteristics of Gases Gases assume the volume and shape of their containers. Gases are the most compressible state of matter. Gases will mix evenly and completely when confined to the same container. Gases have much lower densities than liquids and solids.

Force Pressure = Area Units of Pressure 1 pascal (Pa) = 1 N/m2 Barometer Pressure = Units of Pressure 1 pascal (Pa) = 1 N/m2 1 atm = 760 mmHg = 760 torr 1 atm = 101,325 Pa

10 miles 0.2 atm 4 miles 0.5 atm Sea level 1 atm

Boyle’s Law P a 1/V Constant temperature P x V = constant Constant amount of gas P x V = constant P1 x V1 = P2 x V2

Boyle’s Law P α 1/V This means Pressure and Volume are INVERSELY PROPORTIONAL if moles and temperature are constant (do not change). For example, P goes up as V goes down. P1V1 = P2 V2 Robert Boyle (1627-1691). Son of Earl of Cork, Ireland.

P1 x V1 = P2 x V2 P1 = 726 mmHg P2 = ? V1 = 946 mL V2 = 154 mL P1 x V1 A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg. What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL? P1 x V1 = P2 x V2 P1 = 726 mmHg P2 = ? V1 = 946 mL V2 = 154 mL P1 x V1 V2 726 mmHg x 946 mL 154 mL = P2 = = 4460 mmHg

Charles’s Law If n and P are constant, then V α T V and T are directly proportional. V1 V2 = T1 T2 If one temperature goes up, the volume goes up! Jacques Charles (1746-1823). Isolated boron and studied gases. Balloonist.

As T increases V increases

Gay-Lussac’s Law If n and V are constant, then P α T P and T are directly proportional. P1 P2 = T1 T2 If one temperature goes up, the pressure goes up! Joseph Louis Gay-Lussac (1778-1850)

Variation of gas volume with temperature at constant pressure. Charles’ & Gay-Lussac’s Law V a T Temperature must be in Kelvin V = constant x T V1/T1 = V2/T2 T (K) = t (0C) + 273.15

No, it’s not related to R2D2 Combined Gas Law The good news is that you don’t have to remember all three gas laws! Since they are all related to each other, we can combine them into a single equation. BE SURE YOU KNOW THIS EQUATION! P1 V1 P2 V2 = T1 T2 No, it’s not related to R2D2

V1/T1 = V2/T2 V1 = 3.20 L V2 = 1.54 L T1 = 398.15 K T2 = ? V2 x T1 V1 A sample of carbon monoxide gas occupies 3.20 L at 125 0C. At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant? V1/T1 = V2/T2 V1 = 3.20 L V2 = 1.54 L T1 = 398.15 K T2 = ? V2 x T1 V1 1.54 L x 398.15 K 3.20 L = T2 = = 192 K

Avogadro’s Law V a number of moles (n) V = constant x n V1/n1 = V2/n2 Constant temperature Constant pressure V = constant x n V1/n1 = V2/n2

4NH3 + 5O2 4NO + 6H2O 1 mole NH3 1 mole NO At constant T and P Ammonia burns in oxygen to form nitric oxide (NO) and water vapor. How many volumes of NO are obtained from one volume of ammonia at the same temperature and pressure? 4NH3 + 5O2 4NO + 6H2O 1 mole NH3 1 mole NO At constant T and P 1 volume NH3 1 volume NO

Ideal Gas Equation 1 Boyle’s law: V a (at constant n and T) P Charles’ law: V a T (at constant n and P) Avogadro’s law: V a n (at constant P and T) V a nT P V = constant x = R nT P R is the gas constant PV = nRT

PV = nRT PV (1 atm)(22.414L) R = = nT (1 mol)(273.15 K) The conditions 0 0C and 1 atm are called standard temperature and pressure (STP). Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L. PV = nRT R = PV nT = (1 atm)(22.414L) (1 mol)(273.15 K) R = 0.082057 L • atm / (mol • K)

PV = nRT nRT V = P 1.37 mol x 0.0821 x 273.15 K V = 1 atm V = 30.6 L What is the volume (in liters) occupied by 49.8 g of HCl at STP? T = 0 0C = 273.15 K P = 1 atm PV = nRT n = 49.8 g x 1 mol HCl 36.45 g HCl = 1.37 mol V = nRT P V = 1 atm 1.37 mol x 0.0821 x 273.15 K L•atm mol•K V = 30.6 L

PV = nRT n, V and R are constant nR V = P T = constant P1 T1 P2 T2 = Argon is an inert gas used in lightbulbs to retard the vaporization of the filament. A certain lightbulb containing argon at 1.20 atm and 18 0C is heated to 85 0C at constant volume. What is the final pressure of argon in the lightbulb (in atm)? PV = nRT n, V and R are constant nR V = P T = constant P1 = 1.20 atm T1 = 291 K P2 = ? T2 = 358 K P1 T1 P2 T2 = P2 = P1 x T2 T1 = 1.20 atm x 358 K 291 K = 1.48 atm