Quiz – 1/24 - Friday How many people voted in the election?

Slides:



Advertisements
Similar presentations
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 1 The Mathematics of Voting 1.1Preference Ballots and Preference.
Advertisements

Voting Methods Continued
Math 1010 ‘Mathematical Thought and Practice’ An active learning approach to a liberal arts mathematics course.
IMPOSSIBILITY AND MANIPULABILITY Section 9.3 and Chapter 10.
Chapter 1: Methods of Voting
The Mathematics of Elections
Mathematics The study of symbols, shapes, algorithms, sets, and patterns, using logical reasoning and quantitative calculation. Quantitative Reasoning:
VOTING SYSTEMS Section 2.5.
Math for Liberal Studies.  We have studied the plurality and Condorcet methods so far  In this method, once again voters will be allowed to express.
Excursions in Modern Mathematics Sixth Edition
MAT 105 Spring  As we have discussed, when there are only two candidates in an election, deciding the winner is easy  May’s Theorem states that.
1.1, 1.2 Ballots and Plurality Method
Chapter 9: Social Choice: The Impossible Dream Lesson Plan
CRITERIA FOR A FAIR ELECTION
1 The Process of Computing Election Victories Computational Sociology: Social Choice and Voting Methods CS110: Introduction to Computer Science – Lab Module.
Section 1.1, Slide 1 Copyright © 2014, 2010, 2007 Pearson Education, Inc. Section 11.2, Slide 1 11 Voting Using Mathematics to Make Choices.
MAT 105 Spring  We have studied the plurality and Condorcet methods so far  In this method, once again voters will be allowed to express their.
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 1 The Mathematics of Voting The Paradoxes of Democracy Vote! In.
Copyright © 2009 Pearson Education, Inc. Chapter 15 Section 2 - Slide Election Theory Flaws of Voting.
Ch Voting Preference tables E, F, G, and H are running for math club president If everyone is asked to rank their preferences, how many different.
The Mathematics of Voting Chapter 1. Voting theory: application of methods that affect the outcome of an election. Sec 1: Preference Ballots and Schedules.
Chapter 15 Section 1 - Slide 1 Copyright © 2009 Pearson Education, Inc. AND.
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 1 The Mathematics of Voting 1.1Preference Ballots and Preference.
Math for Liberal Studies.  We have seen many methods, all of them flawed in some way  Which method should we use?  Maybe we shouldn’t use any of them,
Let’s take a class vote. How many of you are registered to vote?
Section 1.1, Slide 1 Copyright © 2014, 2010, 2007 Pearson Education, Inc. Section 11.1, Slide 1 11 Voting Using Mathematics to Make Choices.
Voting Tie Breakers. With each method described – plurality method, Borda count method, plurality with elimination method, and pairwise comparison method.
Fairness Criteria and Arrow’s Theorem Section 1.4 Animation.
Warm-Up Rank the following soft drinks according to your preference (1 being the soft drink you like best and 4 being the one you like least)  Dr. Pepper.
The Mathematics of Voting Chapter 1. Preference Ballot A Ballot in which the voters are asked to rank the candidates in order of preference. 1. Brownies.
© 2010 Pearson Prentice Hall. All rights reserved Flaws of Voting Methods.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 15.2 Flaws of Voting.
14.2 Homework Solutions Plurality: Musical play Borda count: Classical play Plurality-with-elimination: Classical play Pairwise Comparison: Classical play.
The mathematics of voting The paradoxes of democracy.
Chapter 9: Social Choice: The Impossible Dream Lesson Plan Voting and Social Choice Majority Rule and Condorcet’s Method Other Voting Systems for Three.
Excursions in Modern Mathematics, 7e: 1.Conclusion - 2Copyright © 2010 Pearson Education, Inc. 1 The Mathematics of Voting CONCLUSION Elections, Fairness,
Fairness Criteria Fairness Criteria: properties we expect a good voting system to satisfy.Fairness Criteria: properties we expect a good voting system.
Voting System Review Borda – Sequential Run-Off – Run-Off –
My guy lost? What’s up with that….  In the 1950’s, Kenneth Arrow, a mathematical economist, proved that a method for determining election results that.
1.
1 The Process of Computing Election Victories Computational Sociology: Social Choice and Voting Methods CS110: Introduction to Computer Science – Lab Module.
Voting and Apportionment
Plurality and Borda Count Method
1 The Mathematics of Voting
Impossibility and Other Alternative Voting Methods
1.
Plurality with elimination, Runoff method, Condorcet criterion
Chapter 9: Social Choice: The Impossible Dream Lesson Plan
Chapter 10: The Manipulability of Voting Systems Lesson Plan
Chapter 9: Social Choice: The Impossible Dream Lesson Plan
8.2 Voting Possibilities and Fairness Criteria
Impossibility and Other Alternative Voting Methods
Introduction If we assume
Chapter 9: Social Choice: The Impossible Dream Lesson Plan
1.3 The Borda Count Method.
Lecture 1: Voting and Election Math
Elections with More Than Two Candidates
Warm Up – 5/27 - Monday How many people voted in the election?
Warm Up – 1/23 - Thursday How many people voted in the election?
Social Choice Theory [Election Theory]
Classwork: p.33 (27abc run off, 29ab run off, 31, 33ab run off)
Section 15.2 Flaws of Voting
5-2 Election Theory Flaws of Voting.
Voting systems Chi-Kwong Li.
p.33 (28 run off, 30 run off, 32, 34ab run off)
Warm Up – 1/27 - Monday Who wins by Plurality with Elimination?
Section 14.1 Voting Methods.
Flaws of the Voting Methods
Voting Fairness.
Chapter 9: Social Choice: The Impossible Dream Lesson Plan
Presentation transcript:

Quiz – 1/24 - Friday How many people voted in the election? Using the plurality method, who wins the Election? 3. Determine a winner using a second method. State the method that you used and the winner.

Fairness Criterion We want to make our elections fair. There are 4 criterion that make an election fair.

In other words, a voter should not be able to hurt the winner by moving him/her up in his ballot.

Is it fair? - Plurality Method The plurality method fails the Condorcet Criterion. In the table to the right A has the most first place votes. However, B is the preferred candidate B: 55 voters vs. A: 51 voters

Is it fair? – Borda Count Using the Borda Count method, B would win this election. This clearly violates the majority criterion as A received the most first place votes.

Is it fair? – Plurality with Elimination If we use Plur-w/Elim to the schedule on the right, C is the winner. What happens if those 4 voters who voted for A switched to C?

Is it fair? – Plurality with Elimination C won the first election. In election 2, C gains 4 first place votes from A. Who wins?

This violates the Monotonicity Criterion.

Is it fair? – Pairwise Comparison

Arrow’s Impossibility Theorem Mathematician Kenneth Arrow tells us this simple truth: NO ELECTION IS FAIR. No election involving more than two candidates can satisfy all four of the fairness criterion.