“Teach A Level Maths” Vol. 1: AS Core Modules

Slides:



Advertisements
Similar presentations
“Teach A Level Maths” Vol. 2: A2 Core Modules
Advertisements

“Teach A Level Maths” Vol. 1: AS Core Modules
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 22a: Integrating the Simple Functions.
“Teach A Level Maths” Vol. 2: A2 Core Modules
10: Polynomials © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
12: The Quotient Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
6: Roots, Surds and Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
46: Indices and Laws of Logarithms
49: A Practical Application of Log Laws © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
11: The Rule for Differentiation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9a: Differentiating Harder Products © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
22: Division and The Remainder Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
31: Arithmetic Sequences and Series © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
6: Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
20: Stretches © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 6: Differentiating.
24: Indefinite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
44: Stretches of the Trigonometric Functions © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
46: Indices and Laws of Logarithms
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 1: AS Core Modules
3: Quadratic Expressions Expanding Brackets and Factorisation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
38: The graph of tan  © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
4: Translations and Completing the Square © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
25: Definite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
13: Stationary Points © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
Cumulative Distribution Function
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
3: Quadratic Expressions Expanding Brackets and
Laws of Indices.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
Linear Functions of a Discrete Random Variable
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
11: Proving Trig Identities
“Teach A Level Maths” Vol. 2: A2 Core Modules
46: Indices and Laws of Logarithms
“Teach A Level Maths” Vol. 2: A2 Core Modules
Presentation transcript:

“Teach A Level Maths” Vol. 1: AS Core Modules 48: More Laws of Logarithms © Christine Crisp

Module C2 "Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages"

Log laws for Multiplying and Dividing We’ll develop the laws by writing an example with the numbers in index form.

A log is just an index, so to write this in index form we need the logs from the calculator. and So,

A log is just an index, so to write this in index form we need the logs from the calculator. and So,

A log is just an index, so to write this in index form we need the logs from the calculator. and So,

A log is just an index, so to write this in index form we need the logs from the calculator. and So, In general,

Any positive integer could be used as a base instead of 10, so we get: A similar rule holds for dividing. If the base is missed out, you should assume it could be any base e.g. might be base 10 or any other number.

SUMMARY The Laws of Logarithms are: 1. Multiplication law 2. Division law 3. Power law The definition of a logarithm: leads to 4. 5. 6.

e.g. 1 Express the following in terms of (a) (b) (c) Solution: (a) ( Law 1 ) (b) ( Law 3 ) (c) Either ( Law 2 ) ( Law 4 ) Or ( Law 3 )

e.g. 2 Express in terms of and Solution: We can’t use the power to the front law directly! ( Why not? ) There is no bracket round the ab, so the square ONLY refers to the b. So, ( Law 1 ) ( Law 3 )

e.g. 3 Express each of the following as a single logarithm in its simplest form: (b) Solution: (a) (b) This could be simplified to

Exercise 1. Express the following in terms of (a) (b) (c) Ans: (a) (b) (c) 2. Express in terms of and Ans: 3. Express the following as a single logarithm in its simplest form: (a) (b) (a) (b) Ans:

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

SUMMARY The Laws of Logarithms are: 1. Multiplication law 2. Division law 3. Power law The definition of a logarithm: leads to 4. 5. 6.

(a) ( Law 1 ) (b) ( Law 3 ) (c) Either ( Law 2 ) ( Law 4 ) Solution: e.g. 1 Express the following in terms of (c) Or

e.g. 2 Express in terms of and Solution: We can’t use the power to the front law directly! ( Why not? ) There is no bracket round the ab, so the square ONLY refers to the b. So, ( Law 1 ) ( Law 3 )

(b) e.g. 3 Express each of the following as a single logarithm in its simplest form: (a) Solution: This could be simplified to