The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)

Slides:



Advertisements
Similar presentations
Complementary Use of Modern Spectroscopy and Theory in the Study of Rovibrational Levels of BF 3 Robynne Kirkpatrick a, Tony Masiello b, Alfons Weber c,
Advertisements

Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Hamiltonians for Floppy Molecules (as needed for FIR astronomy) A broad overview of state-of-the-art successes and failures for molecules with large amplitude.
LINEAR MOLECULE ROTATIONAL TRANSITIONS:  J = 4  J = 3  J = 2  J = 1  J = 0.
STRUCTURE AND ROTATIONAL DYNAMICS OF ISOAMYL ACETATE AND METHYL PROPIONATE STUDIED BY MICROWAVE SPECTROSCOPY W.STAHL, H. V. L. NGUYEN, L. SUTIKDJA, D.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Physique des Lasers, Atomes et Molécules
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
64 th OSU International Symposium on Molecular Spectroscopy.
Friday, June 21, th OSU SYMPOSIUM MOLECULAR SPECTROSCOPY FB06: Cuisset & al Gas phase rovibrational spectroscopy of DMSO, Part II: « Towards a THz.
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
66th OSU International symposium on molecular spectroscopy
ULTRAHIGH-RESOLUTION SPECTROSCOPY OF DIBENZOFURAN S 1 ←S 0 TRANSITION SHUNJI KASAHARA 1, Michiru Yamawaki 1, and Masaaki Baba 2 1) Molecular Photoscience.
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
CONFORMATIONS AND BARRIERS TO METHYL GROUP INTERNAL ROTATION IN TWO ASYMMETRIC ETHERS: PROPYL METHYL ETHER AND BUTYL METHYL ETHER. TC-06: June 19 th, 2012.
June 21, 2012 Submillimeter Spectrum of Chloromethane: Analysis of the V 3 =1 Excited State Presented by: Alissa Fisher Auburn University and U.S. Army.
RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry and Biochemistry, Kent State University, Kent, OH. RANIL M. GURUSINGHE, MICHAEL TUBERGEN.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
LASER PHOTODISSOCIATION SPECTRA OF THE ANILINE-ARGON CATIONIC CLUSTER IN THE NEAR INFRARED T. PINO, S. DOUIN, Ph. BRECHIGNAC Laboratoire de Photophysique.
HIGH RESOLUTION SPECTROSCOPY OF THE TWO LOWEST VIBRATIONAL STATES OF QUINOLINE C 9 H 7 N O. PIRALI, Z. KISIEL, M. GOUBET, S. GRUET, M.-A. MARTIN-DRUMEL,
Bri Gordon Steven T. Shipman New College of Florida
Ab Initio and Experimental Studies of the E Internal Rotor State of He-CH 3 F Kelly J. Higgins, Zhenhong Yu, and William Klemperer, Department of Chemistry.
ROTATIONAL ENERGIES AND SPECTRA: . LINEAR MOLECULE SPECTRA:  Employing the last equation twice  ΔE= E J+1 – E J = hB(J+1)(J=2) – hBJ(J+1)  Or: ΔE.
Towards understanding quantum monodromy in quasi-symmetric molecules: FASSST rotational spectra of CH 3 NCO and CH 3 NCS Zbigniew Kisiel, a Sarah Fortman,
Molecular Spectroscopy Symposium June 2013 Identification and Assignment of the First Excited Torsional State of CH 2 DOH Within the o 2, e.
Determining the Tunneling Path of the Ar-CHF 3 Complex L. Coudert, a W. Caminati, b A. Maris, b P. Ottaviani, b and A. C. Legon c a Laboratoire Interuniversitaire.
Unusual Internal Rotation Coupling in the Microwave Spectrum of Pinacolone Yueyue Zhao 1, Ha Vinh Lam Nguyen 2, Wolfgang Stahl 1, Jon T. Hougen 3 1 Institute.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
 Small molecules forming the elementary blocks of biomolecules: amino acids, small peptides, nucleic acids, sugars… Can serve as validation tools relatively.
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
The Microwave Spectrum of the Mono Deuterated Species of Methyl Formate HCOOCH 2 D L. H. Coudert, a L. Margulès, b G. Wlodarczak, b and J. Demaison b a.
VIBRATIONAL SATELLITES IN THE ROTATIONAL SPECTRA OF
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
The microwave spectroscopy study of 1,2-dimethoxyethane
A COMPARISON OF THE MOLECULAR STRUCTURES OF C4H9OCH3, C4H9SCH3, C5H11OCH3, AND C5H11SCH3 USING MICROWAVE SPECTROSCOPY BRITTANY E. LONG, Chemistry Department,
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Infrared Spectroscopy of N-Methylacetamide in Solid Parahydrogen
MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES V. Ilyushin1, I. Armieieva1, O. Dorovskaya1,
HIGH RESOLUTION SPECTROSCOPY OF THE CARBON CAGE ADAMANTANE C10H16
IR and Raman spectra of N2H2
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
THE MILLIMETER-WAVE SPECTRUM OF VINYL ACETATE
IMPACT FT-MW Spectroscopy of Organic Rings: Investigation of the
The lowest vibrational states of urea from the rotational spectrum
NH3 measurements in the far-IR
Chirped pulse rotational spectroscopy
Broadband Microwave Spectrum & Structure of Cyclopropyl Cyanosilane
How methyl tops talk with each other
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
Microwave spectra of 1- and 2-bromobutane
The Rotational Spectrum of cis- and trans-HSSOH
Methylstyrenes – Microwave Spectroscopy
Vibrational energies for acrylonitrile from
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
High resolution direct frequency comb spectroscopy of vinyl bromide and nitromethane in the CH stretch region Bryan Changala1, Ben Spaun1, David Patterson2,
High-resolution Laser Spectroscopy
Synchrotron Spectroscopy and Torsional Structure of the
Methylindoles – Microwave Spectroscopy
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
The torsional spectrum of doubly deuterated methanol CHD2OH
by William T. S. Cole, James D. Farrell, David J. Wales, and Richard J
Presentation transcript:

The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) Université Paris Est Créteil WOLFGANG STAHL Institute of Physical Chemistry, RWTH Aachen University

Methyl valerate Methyl pentanoate Chemistry : Linear aliphatic ester (methyl alkanoate) Natur : Fruit ester (odorants of fruits, flowers, wines...) Spectroscopy : Conformations, internal dynamics

Conformational analysis Methoxy methyl group Butyl methyl group Methyl internal rotations  no new conformations

Conformational analysis Methoxy methyl group Butyl methyl group Methyl internal rotations  no new conformations trans or cis esters cis esters much higher in energy  not observable under our experimental conditions  discard only trans esters are considered.

Conformational analysis Methoxy methyl group Butyl methyl group Methyl internal rotations  no new conformations trans or cis esters cis esters much higher in energy  not observable under our experimental conditions  discard only trans esters are considered. Different conformations

Conformational analysis MP2/6-311++G(d,p), 11 stable conformers Conformers VIII-XI : more than 4.5 kJ·mol−1 higher in energy than the most stable conformer I  not observable  discard Except conformer V, all other conformers possess C1 symmetry.

Conformer I Most stable conformation of methyl valerate No linear alkyl chain A = 4407.0 MHz, B = 932.3 MHz, C = 897.4 MHz  near prolate top a = 1.43 D, b = 0.39 D, c = 0.92 D  a-, b-, and c-type transitions

Conformer I Two methyl internal rotors Barrier heights : Methoxy methyl group Butyl methyl group Two methyl internal rotors Barrier heights : Methoxy methyl group : about 420 cm1 (Methyl acetate : 422 cm 1, Methyl propionate : 429 cm1)  A-E splittings up to a few tens of MHz Butyl methyl group :  1000 cm1  no observable splittings

Molecular beam FT microwave spectroscopy, 2 – 26.5 GHz Measurements Molecular beam FT microwave spectroscopy, 2 – 26.5 GHz High resolution Broadband scan Experimental accuracy: 2 kHz Doppler effect A – E splittings Broader lines (unresolved splittings from the alkyl methyl rotor)  4 kHz Series of automatically recorded spectra in the high resolution mode 250 kHz step width, 50 decays per step Frequency range : 9  13.5 GHz

Rigid-Rotor (A Species) Assignments Expt. Calc.

Rigid-Rotor (A Species) Assignments 6 ← 5 7 ← 6 Expt. Calc. R-branch a-type J = 6 ← 5 and J = 7 ← 6 transitions shifted by  0.5 GHz

Rigid-Rotor (A Species) Assignments Expt. Calc. Q-branch b-type transitions shifted by up to 2.0 GHz

Internal Rotation (E Species) Assignments Expt. Methoxy methyl group Calc. Barrier to internal rotation : estimated to be 420 cm1 Polar-coordinates of the internal rotor axis : taken from the geometry optimized at the MP2/6-311++G(d,p) level

Molecular Parameters PAR. Unit XIAM A MHz 5063.17500(71) B 897.72973(19) C 846.44127(19) J kHz 0.27385(64) JK −6.7550(49) K 68.77(14) J −0.01929(32) K 2.611(82) V3,1 cm–1 417.66(68) F0 GHz 157.98(22) (i1,a) ° 37.793(93) (i1,b) 52.293(93) (i1,c) 87.8136(46) NA/NE 85/83  3.3 MP2 XIAMMP2 4407.0 656.2 (13 %) 932.3 34.6 (4 %) 897.4 51.0 (6 %)

Within the experimental accuracy Molecular Parameters PAR. Unit XIAM A MHz 5063.17500(71) B 897.72973(19) C 846.44127(19) J kHz 0.27385(64) JK −6.7550(49) K 68.77(14) J −0.01929(32) K 2.611(82) V3,1 cm–1 417.66(68) F0 GHz 157.98(22) (i1,a) ° 37.793(93) (i1,b) 52.293(93) (i1,c) 87.8136(46) NA/NE 85/83  3.3 MP2 XIAMMP2 4407.0 656.2 (13 %) 932.3 34.6 (4 %) 897.4 51.0 (6 %) Within the experimental accuracy

Molecular Parameters PAR. Unit XIAM A MHz 5063.17500(71) B 897.72973(19) C 846.44127(19) J kHz 0.27385(64) JK −6.7550(49) K 68.77(14) J −0.01929(32) K 2.611(82) V3,1 cm–1 417.66(68) F0 GHz 157.98(22) (i1,a) ° 37.793(93) (i1,b) 52.293(93) (i1,c) 87.8136(46) NA/NE 85/83  3.3 MP2 XIAMMP2 4407.0 656.2 (13 %) 932.3 34.6 (4 %) 897.4 51.0 (6 %)

Molecular Parameters PAR. Unit XIAM A MHz 5063.17500(71) B 897.72973(19) C 846.44127(19) J kHz 0.27385(64) JK −6.7550(49) K 68.77(14) J −0.01929(32) K 2.611(82) V3,1 cm–1 417.66(68) F0 GHz 157.98(22) (i1,a) ° 37.793(93) (i1,b) 52.293(93) (i1,c) 87.8136(46) NA/NE 85/83  3.3 MP2 XIAMMP2 4407.0 656.2 (13 %) 932.3 34.6 (4 %) 897.4 51.0 (6 %)

Molecular Parameters PAR. Unit XIAM A MHz 5063.17500(71) B 897.72973(19) C 846.44127(19) J kHz 0.27385(64) JK −6.7550(49) K 68.77(14) J −0.01929(32) K 2.611(82) V3,1 cm–1 417.66(68) F0 GHz 157.98(22) (i1,a) ° 37.793(93) (i1,b) 52.293(93) (i1,c) 87.8136(46) NA/NE 85/83  3.3 MP2 XIAMMP2 4407.0 656.2 (13 %) 932.3 34.6 (4 %) 897.4 51.0 (6 %)

Molecular Parameters PAR. Unit XIAM A MHz 5063.17500(71) B 897.72973(19) C 846.44127(19) J kHz 0.27385(64) JK −6.7550(49) K 68.77(14) J −0.01929(32) K 2.611(82) V3,1 cm–1 417.66(68) F0 GHz 157.98(22) (i1,a) ° 37.793(93) (i1,b) 52.293(93) (i1,c) 87.8136(46) NA/NE 85/83  3.3 MP2 XIAMMP2 4407.0 656.2 (13 %) 932.3 34.6 (4 %) 897.4 51.0 (6 %)

Basis set variation Conformer I was definitively assigned ! a-type 6 ← 5 MP2/6-311++G(d,p) level fails ! Which level works ?

Basis set variation Conformer I was definitively assigned ! a-type 6 ← 5 MP2/6-311++G(d,p) level fails ! Which level works ? MP2/cc-pVDZ

Barrier heights in methyl alkanoates PAR. Unit XIAM A MHz 5063.17500(71) B 897.72973(19) C 846.44127(19) J kHz 0.27385(64) JK −6.7550(49) K 68.77(14) J −0.01929(32) K 2.611(82) V3,1 cm–1 417.66(68) F0 GHz 157.98(22) (i1,a) ° 37.793(93) (i1,b) 52.293(93) (i1,c) 87.8136(46) NA/NE 85/83  3.3 coupling 422.0 cm1 Methyl acetate 429.3 cm1 Methyl propionate 425.1 cm1 Similar structures Methyl butyrate 417.7 cm1 Methyl valerate