Volume 17, Issue 4, Pages (October 2009)

Slides:



Advertisements
Similar presentations
Volume 8, Issue 4, Pages (April 2017)
Advertisements

Volume 22, Issue 2, Pages (April 2006)
Volume 140, Issue 2, Pages (February 2011)
Molecular Basis for Recognition of Dilysine Trafficking Motifs by COPI
Mitochondrial ER Contacts Are Crucial for Mitophagy in Yeast
Volume 63, Issue 1, Pages (July 2016)
Colleen T. Skau, David R. Kovar  Current Biology 
Volume 25, Issue 7, Pages (March 2015)
Kre1p, the Plasma Membrane Receptor for the Yeast K1 Viral Toxin
Volume 24, Issue 7, Pages (July 2016)
The let-7 microRNA Directs Vulval Development through a Single Target
Roger B. Deal, Steven Henikoff  Developmental Cell 
Volume 57, Issue 6, Pages (March 2015)
Volume 20, Issue 2, Pages (January 2010)
Adam Friedman, Norbert Perrimon  Cell 
Volume 125, Issue 4, Pages (May 2006)
Casein Kinase 1 Promotes Initiation of Clathrin-Mediated Endocytosis
Meghal Gandhi, Vérane Achard, Laurent Blanchoin, Bruce L. Goode 
Volume 85, Issue 2, Pages (January 2015)
Volume 13, Issue 1, Pages (July 2007)
Volume 19, Issue 3, Pages (September 2010)
Volume 153, Issue 1, Pages (March 2013)
John T. Arigo, Kristina L. Carroll, Jessica M. Ames, Jeffry L. Corden 
Volume 50, Issue 2, Pages (April 2013)
Volume 25, Issue 7, Pages (March 2015)
Suzanne Komili, Natalie G. Farny, Frederick P. Roth, Pamela A. Silver 
Volume 27, Issue 2, Pages (October 2013)
The Translational Landscape of the Mammalian Cell Cycle
Volume 26, Issue 5, Pages (September 2013)
Christopher R Cowles, Greg Odorizzi, Gregory S Payne, Scott D Emr  Cell 
Volume 14, Issue 3, Pages (January 2016)
Volume 1, Issue 2, Pages (August 2015)
The let-7 microRNA Directs Vulval Development through a Single Target
Volume 29, Issue 6, Pages (June 2014)
Volume 8, Issue 4, Pages (April 2017)
Volume 41, Issue 4, Pages e4 (May 2017)
Volume 31, Issue 3, Pages (August 2008)
Jon E. Paczkowski, J. Christopher Fromme  Developmental Cell 
Volume 27, Issue 3, Pages (March 2015)
Volume 30, Issue 3, Pages (August 2014)
Volume 48, Issue 2, Pages (October 2012)
Jasper S. Weinberg, David G. Drubin  Current Biology 
Volume 22, Issue 4, Pages e5 (October 2017)
Volume 38, Issue 1, Pages (July 2016)
Volume 18, Issue 1, Pages (January 2010)
Volume 22, Issue 4, Pages (April 2012)
Volume 15, Issue 4, Pages (October 2008)
Marko Kaksonen, Christopher P. Toret, David G. Drubin  Cell 
Genjiro Suzuki, Jonathan S. Weissman, Motomasa Tanaka  Molecular Cell 
Volume 14, Issue 1, Pages (January 2008)
Volume 42, Issue 2, Pages e5 (July 2017)
Volume 24, Issue 5, Pages (March 2014)
c-Src Activates Endonuclease-Mediated mRNA Decay
Kai Li, Qiang Jiang, Xue Bai, Yi-Feng Yang, Mei-Yu Ruan, Shi-Qing Cai 
Syntaxin 13, a Genetic Modifier of Mutant CHMP2B in Frontotemporal Dementia, Is Required for Autophagosome Maturation  Yubing Lu, Zhijun Zhang, Danqiong.
Volume 85, Issue 4, Pages (February 2015)
A Link between ER Tethering and COP-I Vesicle Uncoating
Sara K. Donnelly, Ina Weisswange, Markus Zettl, Michael Way 
Arabidopsis NF-YCs Mediate the Light-Controlled Hypocotyl Elongation via Modulating Histone Acetylation  Yang Tang, Xuncheng Liu, Xu Liu, Yuge Li, Keqiang.
The REF-1 Family of bHLH Transcription Factors Pattern C
In Vivo Dynamics of Clathrin and Its Adaptor-Dependent Recruitment to the Actin-Based Endocytic Machinery in Yeast  Thomas M. Newpher, Robin P. Smith,
Volume 16, Issue 4, Pages (April 2009)
Interaxonal Interaction Defines Tiled Presynaptic Innervation in C
Figure 4 DNM1 mutations affect protein levels and self-dimerization (A) HeLa cells were transfected with green fluorescent protein (GFP)-tagged mutant.
Structure of the Siz/PIAS SUMO E3 Ligase Siz1 and Determinants Required for SUMO Modification of PCNA  Ali A. Yunus, Christopher D. Lima  Molecular Cell 
Volume 24, Issue 2, Pages (January 2013)
Casein Kinase 1 Promotes Initiation of Clathrin-Mediated Endocytosis
Volume 28, Issue 1, Pages (January 2014)
Volume 10, Issue 7, Pages (February 2015)
Volume 150, Issue 1, Pages (July 2012)
Presentation transcript:

Volume 17, Issue 4, Pages 552-560 (October 2009) A Yeast Killer Toxin Screen Provides Insights into A/B Toxin Entry, Trafficking, and Killing Mechanisms  Susheela Y. Carroll, Peter C. Stirling, Helen E.M. Stimpson, Esther Gießelmann, Manfred J. Schmitt, David G. Drubin  Developmental Cell  Volume 17, Issue 4, Pages 552-560 (October 2009) DOI: 10.1016/j.devcel.2009.08.006 Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 1 A Genome-Wide Screen for K28 Resistance or Hypersensitivity (A) Examples of killer assay results for BY4742 (WT), hypersensitive 192.2d, and resistant sla2Δ strains. Arrows represent halo measurements. Scale bar, 5 mm. (B and C) Manually annotated groupings of K28 resistant (B) and hypersensitive (C) mutants. (D and E) Statistically enriched gene ontology (GO) terms among K28 resistant (D) and hypersensitive (E) mutations. Developmental Cell 2009 17, 552-560DOI: (10.1016/j.devcel.2009.08.006) Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 2 Genes from Selected Complexes and Pathways Implicated in K28 Resistance or Hypersensitivity Osprey generated network diagrams of genes related to (A) cell wall and lipid biogenesis, (B) vesicular trafficking, and (C) the regulation of gene expression. Yellow and orange circles represent K28 resistant deletions or ts alleles, respectively, and light blue and dark blue circles represent K28 hypersensitive deletions or ts alleles, respectively. Gray lines depict the K28 phenotype while red lines depict published physical, functional, or genetic interactions within a subgroup of genes. Developmental Cell 2009 17, 552-560DOI: (10.1016/j.devcel.2009.08.006) Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 3 K28 Binding Defects Underlie a Proportion of Toxin-Resistant Mutations Relative toxin activity remaining after depletion of K28 containing culture supernatant with wild-type or mutant cells. Shown are the mean values of at least three experiments for mutants that deplete toxin activity significantly more poorly than wild-type (p < 0.01). Error bars indicate standard error of the mean. Developmental Cell 2009 17, 552-560DOI: (10.1016/j.devcel.2009.08.006) Copyright © 2009 Elsevier Inc. Terms and Conditions

Figure 4 Yeast AP2 Subunits Are Endocytic Coat Proteins (A) Killer assays of BY4742 (WT), a control endocytic mutant, and AP2 subunit deletions. (B) Yeast expressing Apl1-GFP or Apm4-GFP. Kymographs of the patches indicated by the arrows from movies of cells expressing the GFP-tagged proteins. (C) Yeast expressing Apl1-GFP and Abp1-mRFP (above) or Sla1-mCherry (below). Kymographs and montages of single patches indicated by the arrows from two-color movies of cells expressing the indicated proteins. (D) Wild-type (WT) or apl1Δ yeast expressing Apm4-GFP. (E) Network diagram of the endocytic mutants identified in our screen. Gray lines depict the K28 phenotype and red lines depict published interactions within a subgroup of genes. (F) Subcellular fractionation for the indicated strains treated with K28. Fractions were probed with the indicated antibodies by western blotting. P13 = 13,000 g pellet; P100 = 100,000 g pellet; S100 = 100,000 g supernatant. (G) Western blots of K28 remaining in cell-free culture supernatant after incubation of spheroplasts with K28 over time. Scale bars, 4 μm. Developmental Cell 2009 17, 552-560DOI: (10.1016/j.devcel.2009.08.006) Copyright © 2009 Elsevier Inc. Terms and Conditions