Introductory Logic PHI 120

Slides:



Advertisements
Similar presentations
Introductory Logic PHI 120 Presentation: "Intro to Formal Logic" Please turn off all cell phones!
Advertisements

Introduction to Logic Logical Form: general rules
Solve an equation with variables on both sides
Solve an equation by combining like terms
Step 1: Simplify Both Sides, if possible Distribute Combine like terms Step 2: Move the variable to one side Add or Subtract Like Term Step 3: Solve for.
 Multi-Step Equations Unit 3.08 I can solve multi-step equations that use the distributive property.
MJ2 Ch 1.6 – Algebraic Properties Quiz # 1. Bellwork Take out yesterday’s assignment and leave it on your desk for me to check! Solve and Check 1. x +
Course Outline Book: Discrete Mathematics by K. P. Bogart Topics:
Solve Equations with Variables on Both Sides
Logic Geometry Unit 11, Lesson 5 Mrs. Reed. Definition Statement – a sentence that is either true or false. Example: There are 30 desks in the room.
Properties refer to rules that indicate a standard procedure or method to be followed. A proof is a demonstration of the truth of a statement in mathematics.
Introductory Logic PHI 120 Presentation: “Basic Concepts Review "
Notes 2.4– Solving Equations with Variables on Both Sides.
Algebra II Honors Properties Review Chapter 1. We will solve 2x + 4 = 6x – 12 Showing all of the properties used So Let’s go!
Introductory Logic PHI 120 Presentation: "Natural Deduction – Introduction“ Bring this book to lecture.
Introductory Logic PHI 120 Presentation: “Solving Proofs" Bring the Rules Handout to lecture.
Solving Linear Inequalities Chapter 1.6 Part 3. Properties of Inequality 2.
Warm Up (3 + 6) = (4 + 3) a(b – c) = ab – ac = 0 4. (ab)c = (ac)b = 5 6. Name each property Answers 1.Associative property.
2.1 Solving One Step Equations. Addition Property of Equality For every real number a, b, and c, if a = b, then a + c = b + c. Example 8 = For every.
Objective: To solve multi-step inequalities Essential Question: How do I solve multi-step inequality? Example #1 : solving multi-step inequalities 2x −
Lesson #1.  Foldable: terms, definitions and examples  Mathematical properties– commutative, associative, distributive, identity  I CAN apply the properties.
Completing the Square Be ready to grade the homework!
Warm - Up = ( ) - 1 = 1363 Use a similar problem-solving strategy to compute the following. Show all of your work
Review Find a counter example for the conjecture Given: JK = KL = LM = MJ Conjecture: JKLM forms a square.
2.4 – Solving Equations with the Variable on Each Side.
1.7 Intro to Solving Equations Objective(s): 1.) to determine whether an equation is true, false, or open 2.)to find solutions sets of an equation 3.)to.
6-2 Solving Systems Using Substitution Hubarth Algebra.
Martin-Gay, Beginning Algebra, 5ed
3.5 Solving Equations with Variables on Both Sides.
Splash Screen.
Completing the Square 8
1.7 Introduction to Solving Inequalities
Math Professional Development
3.1.1: Properties of Equality/Operations
5.6 Complex Numbers.
1.7 Introduction to Solving Inequalities
Introduction While it may not be efficient to write out the justification for each step when solving equations, it is important to remember that the properties.
Solving Inequalities (3-2)
Welcome! Agenda Warm Up Algebraic Properties Notes
Chapter 7.5 Roots and Zeros Standard & Honors
6-2 Solving Systems Using Substitution
Section 5.3A Solving Proportions Section 5.3A Solving Proportions
Introductory Logic PHI 120
3-4B Solving Inequalities with Special Solutions
Commutative and Associative Properties
Essential Question: How do I graph & solve exponential and logarithmic functions? Daily Question: What are the properties of logarithms and how do I use.
Solve an equation by combining like terms
OBJECTIVE: Students will solve multistep equations.
Today we face the dreaded heads and legs mathematical pickles!
Commutative Property Associative Property A. Addition
1.4 Solving Absolute-Value Equations
Section 2.4 Cosine Law © Copyright all rights reserved to Homework depot:
5.4 – Complex Numbers.
1.4 Solving Absolute-Value Equations
Sec 5: Operations with Complex Numbers
Objective Solve equations in one variable that contain more than one operation.
How do we complete the square?
Objective Solve equations in one variable that contain more than one operation.
Warm Up 9/12/18 Solve x. 1) 3x – 7 = 5 + 2x
Algebra II 5-7 Completing the Square.
Do Now: Simplify the algebraic expression 16y6 + 4y4 – 13y
grade 3-4 addition and subtraction
Bellwork x – 2(x + 10) = 12.
Commutative Property Associative Property A. Addition
If an equation contains fractions, it may help to multiply both sides of the equation by the least common denominator (LCD) to clear the fractions before.
Introductory Logic PHI 120
Introductory Logic PHI 120
11.4 Mathematical Induction
Presentation transcript:

Introductory Logic PHI 120 Complex Problems II Introductory Logic PHI 120

Grading, attendance, accommodation issues RECITATION INSTRUCTOR REMINDER Grading, attendance, accommodation issues Dealt with by your RECITATION INSTRUCTOR

Homework Proofs Handout: Problem Set A: S1 - S27 Problem Set B: T1 – T4 Problem Set C: S34 - S49 Problem Set D: T5 - T7

Homework (1) Solve S39 – S49 from Proofs Handout T5 – T7 Come to review with specific problems (3) Study Guide 2

Mathematical Concepts -- Commutativity -- -- Distribution -- -- Associativity -- Problems from Ex. 1.5.1

Commutativity 2 x 2 Question Method Mathematical Concepts P & Q ⊣⊢ Q & P P v Q ⊣⊢ Q v P 2 x 2 Question Method P <-> Q ⊣⊢ Q <-> P

PvQ ⊣⊢ QvP

PvQ ⊣⊢ QvP P v Q ⊢ Q v P Q v P ⊢ P v Q

PvQ ⊣⊢ QvP The Two Questions Think vE (why?) P v Q ⊢ Q v P (1) P v Q A Think vI (why?) P v Q ⊢ Q v P (1) P v Q A (2) Q v P ⊢ P v Q Think vE (why?) The Two Questions

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) A Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A 2 (2) ~P A Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A (3) Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A (3) 1,2 vE Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A (3) Q 1,2 vE

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE (4)

PvQ ⊣⊢ QvP vI P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE (4) ?? Q v P ⊢ P v Q

PvQ ⊣⊢ QvP vI P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE

PvQ ⊣⊢ QvP vI P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE

PvQ ⊣⊢ QvP The Two Questions vI P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI Q v P ⊢ P v Q The Two Questions Either ->I or RAA

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) Q v P ⊢ P v Q RAA Strategy

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) A Q v P ⊢ P v Q RAA Strategy

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A Q v P ⊢ P v Q RAA Strategy

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI 5 (5) ~(Q v P) A Q v P ⊢ P v Q RAA Strategy Remember: assumptions take the number of the line

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI 5 (5) ~(Q v P) A Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A (6) Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A (6) 4,5 RAA(?) Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A (6) 4,5 RAA(?) Q v P ⊢ P v Q “save the best for last”

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A (6) 4,5 RAA(2) Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A (6) P 4,5 RAA(2) Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI 5 (5) ~(Q v P) A 1,5 (6) P 4,5 RAA(2) Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A 1,5 (6) P 4,5 RAA(2) (7) Q v P ⊢ P v Q

PvQ ⊣⊢ QvP vI P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE (5) ~(Q v P) A 1,5 (6) P 4,5 RAA(2) (7) ?? Q v P ⊢ P v Q

PvQ ⊣⊢ QvP vI P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE (5) ~(Q v P) A 1,5 (6) P 4,5 RAA(2) (7) 6 vI Q v P ⊢ P v Q

PvQ ⊣⊢ QvP vI P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE (5) ~(Q v P) A 1,5 (6) P 4,5 RAA(2) (7) Q v P 6 vI Q v P ⊢ P v Q

PvQ ⊣⊢ QvP The Two Questions vI P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A 1,5 (6) P 4,5 RAA(2) 1,5 (7) Q v P 6 vI Q v P ⊢ P v Q The Two Questions

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A 1,5 (6) P 4,5 RAA(2) 1,5 (7) Q v P 6 vI (8) Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A 1,5 (6) P 4,5 RAA(2) 1,5 (7) Q v P 6 vI (8) 5,7 RAA(5) Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A 1,5 (6) P 4,5 RAA(2) 1,5 (7) Q v P 6 vI (8) Q v P 5,7 RAA(5) Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI 5 (5) ~(Q v P) A 1,5 (6) P 4,5 RAA(2) 1,5 (7) Q v P 6 vI (8) Q v P 5,7 RAA(5) Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A 1,5 (6) P 4,5 RAA(2) 1,5 (7) Q v P 6 vI 1 (8) Q v P 5,7 RAA(5) Q v P ⊢ P v Q

PvQ ⊣⊢ QvP P v Q ⊢ Q v P (1) P v Q A (2) ~P A 1,2 (3) Q 1,2 vE 1,2 (4) Q v P 3 vI (5) ~(Q v P) A 1,5 (6) P 4,5 RAA(2) 1,5 (7) Q v P 6 vI 1 (8) Q v P 5,7 RAA(5) Q v P ⊢ P v Q Solve on your own

Distribution Mathematical Concepts P & (Q v R) ⊣⊢ (P & Q) v (P & R) P v (Q & R) ⊣⊢ (P v Q) & (P v R)

Distribution Mathematical Concepts P & (Q v R) ⊣⊢ (P & Q) v (P & R) P v (Q & R) ⊣⊢ (P v Q) & (P v R)

P&(QvR) ⊣⊢ (P&Q)v(P&R)

P&(QvR) ⊣⊢ (P&Q)v(P&R) Do this left side one on your own (P & Q) v (P & R) ⊢ P & (Q v R)

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A (2) ?? Recognize the RAA! If forced to add assumptions, you may begin with the proper strategy.

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A (possible vE) 2 (2) ~(P & (Q v R)) A (3) ??

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A (disjunction) 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A (denial of left disjunct)

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A (disjunction) 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A (denial of left disjunct) 1,3 (4) P & R 1, 3 vE (the other disjunct)

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I (9) 2,8 RAA(?)

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I (9) P & Q 2,8 RAA(3)

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I 1,2 (9) P & Q 2,8 RAA(3)

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I 1,2 (9) P & Q 2,8 RAA(3)

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I 1,2 (9) P & Q 2,8 RAA(3) 1,2 (10) P 9 &E

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I 1,2 (9) P & Q 2,8 RAA(3) 1,2 (10) P 9 &E 1,2 (11) Q 9 &E

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I 1,2 (9) P & Q 2,8 RAA(3) 1,2 (10) P 9 &E 1,2 (11) Q 9 &E 1,2 (12) Q v R 11 vI

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I 1,2 (9) P & Q 2,8 RAA(3) 1,2 (10) P 9 &E 1,2 (11) Q 9 &E 1,2 (12) Q v R 11 vI 1,2 (13) P & (Q v R) 10, 12 &I

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I 1,2 (9) P & Q 2,8 RAA(3) 1,2 (10) P 9 &E 1,2 (11) Q 9 &E 1,2 (12) Q v R 11 vI 1,2 (13) P & (Q v R) 10, 12 &I

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I 1,2 (9) P & Q 2,8 RAA(3) 1,2 (10) P 9 &E 1,2 (11) Q 9 &E 1,2 (12) Q v R 11 vI 1,2 (13) P & (Q v R) 10, 12 &I 1 (14) P & (Q v R) 2, 13 RAA (2)

P&(QvR) ⊣⊢ (P&Q)v(P&R) (P & Q) v (P & R) ⊢ P & (Q v R) 1 (1) (P & Q) v (P & R) A 2 (2) ~(P & (Q v R)) A 3 (3) ~(P & Q) A 1,3 (4) P & R 1, 3 vE 1,3 (5) P 4 &E 1,3 (6) R 4 &E 1,3 (7) Q v R 6 vI 1,3 (8) P & (Q v R) 5, 7 &I 1,2 (9) P & Q 2,8 RAA(3) 1,2 (10) P 9 &E 1,2 (11) Q 9 &E 1,2 (12) Q v R 11 vI 1,2 (13) P & (Q v R) 10, 12 &I 1 (14) P & (Q v R) 2, 13 RAA (2) Distribution: Complex? Yes. Hard? Moderately so.

Associativity Do these problems at home Mathematical Concepts P & (Q & R) ⊣⊢ (P & Q) & R Do these problems at home P v (Q v R) ⊣⊢ (P v Q) v R

Homework (1) Solve S39 – S49 from Proofs Handout T5 – T7 Come to review with specific problems (3) Study Guide 2