A.R. Tan, E.Y. Dong, G.A. Ateshian, C.T. Hung 

Slides:



Advertisements
Similar presentations
Early intervention with Interleukin-1 Receptor Antagonist Protein modulates catabolic microRNA and mRNA expression in cartilage after impact injury  A.A.
Advertisements

Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-α and interleukin-6, but accentuates.
Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage  P. Behrendt, A. Preusse-Prange,
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3  E.G. Lima, M.Phil., M.S., L. Bian,
Early intervention with Interleukin-1 Receptor Antagonist Protein modulates catabolic microRNA and mRNA expression in cartilage after impact injury  A.A.
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
B. Mohanraj, G.R. Meloni, R.L. Mauck, G.R. Dodge 
Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs  B.D. Elder,
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs  M.J. Farrell, J.I. Shin, L.J.
Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage  Peggy M.
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
M. M. Temple, Ph. D. , W. C. Bae, Ph. D. , M. Q. Chen, M. S. , M
Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture  Dr R.L. Mauck, Ph.D., X. Yuan, Dr.
BMP activation and Wnt-signalling affect biochemistry and functional biomechanical properties of cartilage tissue engineering constructs  A. Krase, R.
Cationic agent contrast-enhanced computed tomography imaging of cartilage correlates with the compressive modulus and coefficient of friction  B.A. Lakin,
S. Varghese, Ph. D. , P. Theprungsirikul, B. S. , S. Sahani, B. S. , N
Contrast Enhanced Computed Tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage  P.N. Bansal, N.S.
The effects of dynamic viscosity on cartilage mechanics
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression  J.H. Lai, M.E. Levenston  Osteoarthritis and Cartilage 
Complex loading affects intervertebral disc mechanics and biology
The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair  N.M. Eltawil, S.E.M. Howie, A.H.R.W.
A. H. Huang, B. S. , M. Yeger-McKeever, M. D. , A. Stein, R. L
Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties 
P.A. Torzilli, M. Bhargava, S. Park, C.T.C. Chen 
C. Candrian, S. Miot, F. Wolf, E. Bonacina, S. Dickinson, D. Wirz, M
The differences on extracellular matrix among each portion of meniscus
A.W. Palmer, C.G. Wilson, E.J. Baum, M.E. Levenston 
Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo  A.I. Chou, S.O. Akintoye, S.B. Nicoll  Osteoarthritis.
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
J.E. Jeon, K. Schrobback, D.W. Hutmacher, T.J. Klein 
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
Cartilage shear dynamics during tibio-femoral articulation: effect of acute joint injury and tribosupplementation on synovial fluid lubrication  B.L.
K. D. Novakofski, R. M. Williams, L. A. Fortier, H. O. Mohammed, W. R
L. C. Davies, B. Sc. , Ph. D. , E. J. Blain, B. Sc. , Ph. D. , B
Bisphosphonate rescues cartilage from trauma damage by promoting mechanical sensitivity and calcium signaling in chondrocytes  Y. Zhou, M. Park, L. Wang,
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors.
H. Sadeghi, D.E.T. Shepherd, D.M. Espino  Osteoarthritis and Cartilage 
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
The changing role of the superficial region in determining the dynamic compressive properties of articular cartilage during postnatal development  A.R.
Removal of the superficial zone of bovine articular cartilage does not increase its frictional coefficient  R. Krishnan, M. Caligaris, R.L. Mauck, C.T.
A.L. McNulty, B.T. Estes, R.E. Wilusz, J.B. Weinberg, F. Guilak 
M. Hufeland, M. Schünke, A.J. Grodzinsky, J. Imgenberg, B. Kurz 
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
Tissue engineering of stratified articular cartilage from chondrocyte subpopulations  T.J. Klein, M.S., B.L. Schumacher, B.S., T.A. Schmidt, M.S., K.W.
Mechanical injury of bovine cartilage explants induces depth-dependent, transient changes in MAP kinase activity associated with apoptosis  D.H. Rosenzweig,
Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with β-aminopropionitrile  A. Asanbaeva, Ph.D.,
Tissue engineering with meniscus cells derived from surgical debris
Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition  M. Son, S.B. Goodman,
K.D. Novakofski, R.M. Williams, L.J. Bonassar, L.A. Fortier 
K. -C. Wang, E. Kwan, K. Aris, T. T. Egelhoff, A. I. Caplan, J. F
Estrogen reduces mechanical injury-related cell death and proteoglycan degradation in mature articular cartilage independent of the presence of the superficial.
Mitoprotection as a strategy to prevent chondrocyte death and cartilage degeneration following mechanical injury  M.L. Delco, E.D. Bonnevie, H.H. Szeto,
C. Pascual Garrido, A. A. Hakimiyan, L. Rappoport, T. R. Oegema, M. A
J.F. Nishimuta, M.E. Levenston  Osteoarthritis and Cartilage 
Y. Akasaki, A. Hasegawa, M. Saito, H. Asahara, Y. Iwamoto, M.K. Lotz 
K. -C. Wang, E. Kwan, K. Aris, T. T. Egelhoff, A. I. Caplan, J. F
Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression  S.L. Bevill, P.L. Briant, M.E. Levenston,
General Information Osteoarthritis and Cartilage
Presentation transcript:

Response of engineered cartilage to mechanical insult depends on construct maturity  A.R. Tan, E.Y. Dong, G.A. Ateshian, C.T. Hung  Osteoarthritis and Cartilage  Volume 18, Issue 12, Pages 1577-1585 (December 2010) DOI: 10.1016/j.joca.2010.09.003 Copyright © 2010 Terms and Conditions

Fig. 1 Timeline of experimental setup for different groups exposed to trauma. Arrows indicate time in culture when injury was imposed. Osteoarthritis and Cartilage 2010 18, 1577-1585DOI: (10.1016/j.joca.2010.09.003) Copyright © 2010 Terms and Conditions

Fig. 2 Experimental setup of the (a) cracking and (b) cutting setups with a blown up schematic of the injurious device. Compression was applied with an impermeable platen until cracking was achieved. For the cutting setup, blades were cut into the construct to a depth of 50%. Osteoarthritis and Cartilage 2010 18, 1577-1585DOI: (10.1016/j.joca.2010.09.003) Copyright © 2010 Terms and Conditions

Fig. 3 Representative load-time curves generated during mechanical overloading for constructs injured (a) early in culture on day 5 or (b) later in culture on day 35. Arrows indicate point of construct failure. Insets: stereoscopic images of constructs after trauma at each representative time point. Osteoarthritis and Cartilage 2010 18, 1577-1585DOI: (10.1016/j.joca.2010.09.003) Copyright © 2010 Terms and Conditions

Fig. 4 Representative superimposed live and dead images of immature cracked (top) and cut (bottom) constructs at 1 day (a, d), 14 days (b, e), and 28 days (c, f) after injury. Scalebar: 0.5mm. With time in culture, neighboring cells infiltrate into the cracked region of constructs. For constructs injured with a scalpel cut, cells did not infiltrate the cut region, leaving a void space (represented by black space), which was still present at 28 days after injury. Dead cells are visible upon further magnification of the region only immediately (1 day) after injury. Osteoarthritis and Cartilage 2010 18, 1577-1585DOI: (10.1016/j.joca.2010.09.003) Copyright © 2010 Terms and Conditions

Fig. 5 Representative superimposed live and dead images of mature cracked (top) and cut (bottom) constructs at 1 day (a, d), 28 days (b, e), and 50 days (c, f) after injury. Scalebar: 0.5mm. Loss of cell viability (represented by black/void space) is present in the immediate and peripheral regions to the site of injury (crack or cut), which is not recovered with time in culture. Dead cells (nuclei of dead cells are stained red) are visible upon further magnification of the region at 1 day (for cut samples) and up to 28 days (for cracked samples) after injury. Osteoarthritis and Cartilage 2010 18, 1577-1585DOI: (10.1016/j.joca.2010.09.003) Copyright © 2010 Terms and Conditions

Fig. 6 (a) Young’s modulus (EY) and (b) Dynamic modulus (G*) of constructs with time in culture. *P<0.05 vs. control, n=5/group. Crack d35 vs. control, EY: Pday42<0.001, Pday56<0.001, Pday70<0.001. Crack d35 vs. control, G*: Pday42<0.001, Pday56<0.001, Pday70<0.001. Osteoarthritis and Cartilage 2010 18, 1577-1585DOI: (10.1016/j.joca.2010.09.003) Copyright © 2010 Terms and Conditions

Fig. 7 Water content of engineered constructs over time. *P<0.05 vs. control, n=5/group. Pday42=0.020, Pday56<0.001, Pday70<0.001. Osteoarthritis and Cartilage 2010 18, 1577-1585DOI: (10.1016/j.joca.2010.09.003) Copyright © 2010 Terms and Conditions

Fig. 8 (a) GAG and (b) collagen content of control and injured constructs over time normalized to both construct wet weight (left) and dry weight (right). *P<0.05 vs. control, n=5/group. Crack d35 vs. control, GAG: Pday42<0.001, Pday56<0.001, Pday70<0.001. Osteoarthritis and Cartilage 2010 18, 1577-1585DOI: (10.1016/j.joca.2010.09.003) Copyright © 2010 Terms and Conditions