Quantum-classical hybrid algorithms

Slides:



Advertisements
Similar presentations
Gregynog QIP meeting QIP Experiments with ions, atoms and molecules Christopher Foot, University of Oxford
Advertisements

Guin-Dar Lin, Luming Duan University of Michigan 2009 March Meeting G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M.
Superconducting qubits
Quantum Control in Semiconductor Quantum Dots Yan-Ten Lu Physics, NCKU.
Ultrafast Pulsed Laser Gates for Atomic Qubits J OINT Q UANTUM I NSTITUTE with David Hayes, David Hucul, Le Luo, Andrew Manning, Dzmitry Matsukevich, Peter.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Ion Trap Quantum Computer. Two Level Atom as a qubit Electron on lower orbit Electron on higher orbit.
Quantum Computing Ambarish Roy Presentation Flow.

Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Quantum Computing with Entangled Ions and Photons Boris Blinov University of Washington 28 June 2010 Seattle.
Quantum Computing Joseph Stelmach.
Schrödinger’s Elephants & Quantum Slide Rules A.M. Zagoskin (FRS RIKEN & UBC) S. Savel’ev (FRS RIKEN & Loughborough U.) F. Nori (FRS RIKEN & U. of Michigan)
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
NSF Workshop on Quantum Information Processing And Nanoscale Systems, 9/11/2007 Jungsang Kim Changsoon KimFelix Lu Bin LiuCaleb Knoernschild Kyle McKayChris.
Quantum Communication, Quantum Entanglement and All That Jazz Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering,
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.
Quantum systems for information technology, ETHZ
Determination of fundamental constants using laser cooled molecular ions.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
Lecture note 8: Quantum Algorithms
Modular Universal Scalable Ion-trap Quantum Computer MUSIQC Multi-institution collaboration to develop a scalable quantum computer based on ion trap arrays.
The Road to Quantum Computing: Boson Sampling Nate Kinsey ECE 695 Quantum Photonics Spring 2014.
1. FOCUS and MCTP, Department of Physics, University of Michigan, Ann Arbor, Michigan LQIT and ICMP, Department of Physics, South China Normal.
Quantum Convolutional Coding for Distillation and Error Correction Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical.
1 Andrew Chi-Chih Yao Tsinghua University Quantum Computing: A Great Science in the Making.
Quantum Computation With Trapped Ions Brian Fields.
Quantum Steering in the Gaussian World Ioannis Kogias, A. Lee, S. Ragy and G. Adesso University of Nottingham To appear on arXiv: [quant-ph]
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Quantum Convolutional Coding Techniques Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering, University of.
Introduction to Quantum Computing
Large scale quantum computing in silicon with imprecise qubit couplings ArXiv : (2015)
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
Imperial College London Robust Cooling of trapped particles J. Cerrillo-Moreno, A. Retzker and M.B. Plenio (Imperial College) Olomouc Feynman Festival.
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Fiber-integrated Point Paul Trap Tony Hyun Kim 1, Peter F. Herskind 1, Tae-Hyun Kim 2, Jungsang Kim 2, Isaac L. Chuang 1 1 Center for Ultracold Atoms,
1/30 University of Toronto, 28 March 2005 Quantum Information Processing with Atoms and Light Daniel F. V. James Group T-4, Los Alamos National Lab University.
Christopher Monroe Joint Quantum Institute and Department of Physics NIST and University of Maryland Quantum Computation and Simulation.
Quantum Gates and Quantum Simulations with Atoms
Jiří Minář Centre for Quantum Technologies
Quantum Phase Transition of Light: A Renormalization Group Study
Quantum algorithm for the Laughlin wave function
Quantum Computing from theory to experiments
Quantum simulators and hybrid algorithms
the illusion of the Heisenberg scaling
Outline Device & setup Initialization and read out
Ion Trap Quantum Computing and Teleportation
On the collapses and revivals in the Rabi Hamiltonian
Coupled atom-cavity system
Programmable ions set the stage for quantum computers
University of Oxford, U.K.*
Shor's Algorithm with a Linear-Optics Quantum Computer
3rd Lecture: QMA & The local Hamiltonian problem (CNT’D)
Quantum Computing Science A brief history of Quantum Computing
Opening a Remote Quantum Gate
Guin-Dar Lin, Luming Duan University of Michigan 2009 DAMOP Meeting
Experimental Comparison of Two Quantum Computing Architectures
Fiber-coupled Point Paul Trap
Quantum Computing Joseph Stelmach.
Norm Moulton LPS 15 October, 1999
Entangling Atoms with Optical Frequency Combs
Determining the capacity of any quantum computer to perform a useful computation Joel Wallman Quantum Resource Estimation June 22, 2019.
Computational approaches for quantum many-body systems
Jaynes-Cummings Hamiltonian
Wave-Particle Duality and Simple Quantum Algorithms
Presentation transcript:

Quantum-classical hybrid algorithms on a small trapped-ion quantum computer Norbert M. Linke Joint Quantum Institute, University of Maryland, College Park, MD USA 4 Feb 2019, UT Quantum Workshop College Park, Maryland, USA

Overview Quantum computing hardware why ions make good qubits Quantum computer module prototype (5-7 qubits) modular gates and compiler Quantum algorithms Benchmark comparisons Deuteron nucleus Quantum Machine Learning Outlook: challenges and scaling up

Trapped ions + + A good quantum computing candidate – why? | 1〉 | 1〉 | 0〉 | 0〉 laser + + Plant the idea of gates (i.e. conditional operation) using the motion Accessible from the outside, yet undisturbed – a paradox detector Isolated quantum system, preparation and read-out with laser light gate operations (using lasers/microwaves)

The ion trap quantum computer (vision) Ion trap Quantum computing – the big pic segmented electrodes “accumulator” quantum register each operation is subject to error - correcting errors requires additional resources and operations - errors must be below (10-2-10-4 per operation to begin with) microfabricate devices, control over more quantum systems - integrate control elements - use new scalable approaches to control (microwaves) let the Musiqc play! D. J. Wineland et al. 1998 C. Monroe / J. Kim et al. 2013 Are we there yet…? – challenges Higher fidelity operations Scalability: control over more qubits

Ion traps: hardware in current UMD module trapped ion Coulomb crystals

Trapped ion qubits: 171Yb+ level structure compare: “true” clock qubit in 43Ca+ at 146G coherence time ~1min atomic clock qubit -> B-field insensitive long coherence times: ~1s T.P. Harty, et al., PRL 113 (2015) S. Olmschenk, et al., PRA 76 (2007)

S. Debnath et al. Nature 536 (2016) Modular architecture Grover, Hidden Shift, EC … S. Debnath et al. Nature 536 (2016)

Hardware 2S1/2 2P3/2 D=33 THz |0 |1 355 nm 2P1/2 171Yb+ D=66 THz

Hardware: Read-out

S. Debnath et al. Nature 536 (2016) Modular architecture Grover, Hidden Shift, EC … S. Debnath et al. Nature 536 (2016)

Quantum control: Single qubit rotations Raman beat note R-gate

Quantum control: Exciting the motion mode1 mode2 1 5 … Beatnote frequency transition probability carrier red sideband blue K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82 (1999) S.-L. Zhu et. al., Phys. Rev. Lett. 97 (2006) T. Choi et al., Phys. Rev. Lett. 112 (2014)

Quantum control: Full connectivity not limited to local operations NML et al. PNAS 114, 13 (2017)

S. Debnath et al. Nature 536 (2016) Modular architecture Grover, Hidden Shift, EC … S. Debnath et al. Nature 536 (2016)

Quantum compiler: Fredkin gate C-SWAP

Quantum compiler: Fredkin gate circuit NML et al., arxiv 1712.08581 (2017)

Quantum compiler: Fredkin gate results Fredkin [1,2:4], F=86.8(3)% (corrected for 2% spam error)

S. Debnath et al. Nature 536 (2016) Modular architecture Grover, Hidden Shift, EC … S. Debnath et al. Nature 536 (2016)

Quantum algorithms: build it …and they will come! Quantum Fourier Transform, Bernstein-Vazirani algorithm, Deutsch-Josza algorithm1 Hidden Shift algorithm2 – M. Roetteler (Microsoft) Grover’s algorithm4 – D. Maslov (NSF) Fault-tolerant quantum error detection3 – K. Brown (Georgia Tech.) Quantum game theory and Nash equilibria5 – N. Solmeyer (Army Research Lab) Renyi entropy measurement of a Fermi-Hubbard model system6 – S. Johri (Intel) Quantum scrambling and out-of-time-order correlators7 – N. Yao (UC Berkeley) Deuteron VQE10 – R. Pooser (Oak Ridge) Quantum machine learning8 – A. Ortiz (NASA) Bacon-Shor quantum error correction codes10 – T. Yoder (Harvard) Quantum Approximate Optimization (QAOA) of critical states10 – T. Hsieh (Perimeter) … Neural-network-based qubit readout9 – A. Seif (QuiCS/UMD) 1 S. Debnath et al. Nature 536 (2016) 2 NML et al., PNAS 114, 13 (2017) 3 NML et al., Sci Adv. 3, 10 (2017) 4 C. Figgatt et al., Nat. Communs. 8, 1918 (2017) 5 N. Solmeyer et al., QST 3 045002 (2018) 6 NML et al., Phys. Rev. A 98, 052334 (2018) 7 K. A. Landsman et al., arxiv 1806.02807 8 D. Zhu et al., arXiv 1812.08862 (2018) 9 A. Seif et al., J. Phys. B 51 174006 (2018) 10 in preparation

Example algorithms on multiple platforms (Princeton) P. Murali and M. Martonosi (Princeton), A. J. Abhari (IBM), NML (UMD) et al. ISCA-2019 #1300

Example algorithms on multiple platforms (Princeton) P. Murali and M. Martonosi (Princeton), A. J. Abhari (IBM), NML (UMD) et al. ISCA-2019 #1300

Quantum-classical hybrid computing

Ground state of the Deuteron nucleus nuclear binding energy (NIST table): -2.2MeV 3-qubit Hamiltonian (EFT), -2.046MeV: H3 = 15.531709 I + 0.218291 Z0 − 6.125 Z1 − 9.625 Z2 − 2.143304 X0 X1 − 2.143304 Y0 Y1 − 3.913119 X1 X2 − 3.913119 Y1 Y2

Ground state of the Deuteron nucleus Canonical 3-qubit UCC ansatz Dumitrescu, E. F., et al. PRL 120 (2018)

Ground state of the Deuteron nucleus Zero-noise extrapolation experiment for the (theory-)optimal angles UMD/IonQ: error margin 0.8(3)% Richardson, L. F. Phil. Trans. Roy. Soc. A 210 (1911) Temme, K. et al. PRL 119 (2017) Li, Y. PRX 7, 2 (2017) Dumitrescu, E. F., et al. PRL 120 (2018)

Ground state of the Deuteron nucleus 4-qubit Hamiltonian (EFT), -2.14MeV: Canonical 4-qubit UCC ansatz Dumitrescu, E. F., et al. PRL 120 (2018)

Ground state of the Deuteron 4-qubit theory: -2.14 MeV: parameter space Experimental binding energy value: -2.2(1)MeV

Quantum machine learning: Bars and Stripes

Quantum machine learning: Bars and Stripes D. Zhu et al. arXiv 1806.02807

Quantum machine learning: Bars and Stripes D. Zhu et al. arXiv 1806.02807

Quantum machine learning: Bars and Stripes D. Zhu et al. arXiv 1806.02807

Quantum machine learning: Bars and Stripes Classical Leaner 1: Particle Swarm Optimization (PSO) Classical Leaner 2: Bayesian Optimization (BO) surrogate model Using “Optaas” package by Mindfoundry (Oxford) Animation from Wikipedia by Ephramac

Quantum machine learning: Particle Swarm Results D. Zhu et al. arXiv 1806.02807

Quantum machine learning: Particle Swarm Results D. Zhu et al. arXiv 1806.02807

Quantum machine learning: Particle Swarm Results D. Zhu et al. arXiv 1806.02807

Quantum machine learning: Particle Swarm Results D. Zhu et al. arXiv 1806.02807

Quantum machine learning: Bayesian Optimization Results D. Zhu et al. arXiv 1806.02807

Quantum machine learning: Bayesian Optimization Results D. Zhu et al. arXiv 1806.02807

Quantum machine learning: Bayesian Optimization Results successful 26-parameter optimization D. Zhu et al. arXiv 1806.02807

Quantum machine learning… thoughts D. Zhu et al. arXiv 1806.02807

Outlook : the future - scaling up no system will be fully connected for large N the compilation challenge D. Kielpinski et al., Nature 417 (2002) C. Monroe et al., Phys. Rev. A 89 (2014) D. Hucul, et al., Nature Phys. 11 (2015)

Scaling concept 1: control over ~20 qubits Marko Cetina Michael Goldman 0.5 m Laird Egan

“EURIQA” system Nevin. you have to build a system.

Scaling concept 2: ion-photon entanglement no system will be fully connected for large N the compilation challenge D. Kielpinski et al., Nature 417 (2002) C. Monroe et al., Phys. Rev. A 89 (2014) D. Hucul, et al., Nature Phys. 11 (2015)

A direct-transmission networking node smallest-wavelength minimum (Telecom O-band)

Scaling concept 3: motional degrees of freedom “phonon-polariton” states

Daiwei Zhu NML Kevin Landsman Chris Monroe Cinthia H. Alderete Nhung Nguyen Autumn Chiu Mika Chmielewski I thank my advisor, Chris Monroe, and my lab mates, as well as the rest of our group and thank you for your attention. Sonika Johri (Intel) Alejandro Perdomo-Ortiz (NASA) Marcello Benedetti (UCL) Omar Shehab (IonQ) Yunseong Nam (IonQ) Tim Hsieh (Perimeter)