Lecture 10 Queueing Theory. There are a few basic elements common to almost all queueing theory application. Customers arrive, they wait for service in.

Slides:



Advertisements
Similar presentations
Introduction to Queuing Theory
Advertisements

Many useful applications, especially in queueing systems, inventory management, and reliability analysis. A connection between discrete time Markov chains.
Continuous-Time Markov Chains Nur Aini Masruroh. LOGO Introduction  A continuous-time Markov chain is a stochastic process having the Markovian property.
CS 241 Spring 2007 System Programming 1 Queuing Framework for Process Management Evaluation Lecture 20 Klara Nahrstedt.
Discrete Time Markov Chains
TCOM 501: Networking Theory & Fundamentals
Continuous Time Markov Chains and Basic Queueing Theory
Lecture 13 – Continuous-Time Markov Chains
Nur Aini Masruroh Queuing Theory. Outlines IntroductionBirth-death processSingle server modelMulti server model.
The Theory of Queues Models of Waiting in line. Queuing Theory Basic model: Arrivals  Queue  Being Served  Done – Queuing theory lets you calculate:
048866: Packet Switch Architectures Dr. Isaac Keslassy Electrical Engineering, Technion Review.
1.(10%) Let two independent, exponentially distributed random variables and denote the service time and the inter-arrival time of a system with parameters.
Queueing Theory (2). Home Work 12-9 and Due Day: October 31 (Monday) 2005.
EMGT 501 Fall 2005 Midterm Exam SOLUTIONS.
Queueing Theory: Part I
Waiting Line Management
Question 11 – 3.
Data Communication and Networks Lecture 13 Performance December 9, 2004 Joseph Conron Computer Science Department New York University
Management of Waiting Lines
1 Overview of Queueing Systems Michalis Faloutsos Archana Yordanos The web.
The Theory of Queues Models of Waiting in line. Queuing Theory Basic model: Arrivals  Queue  Being Served  Done – Queuing theory lets you calculate:
Queuing. Elements of Waiting Lines  Population –Source of customers Infinite or finite.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Chapter 16 Waiting Line Models and.
The Poisson process and exponentially distributed service time In real life customers don’t arrive at pre-ordained times as specified in the last tutorial…
Introduction to Queuing Theory. 2 Queuing theory definitions  (Kleinrock) “We study the phenomena of standing, waiting, and serving, and we call this.

Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Waiting Line Analysis for Service Improvement Operations Management.
Queueing Theory I. Summary Little’s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K  …
Queuing Theory Summary of results. 2 Notations Typical performance characteristics of queuing models are: L : Ave. number of customers in the system L.
Copyright ©: Nahrstedt, Angrave, Abdelzaher, Caccamo1 Queueing Systems.
Probability Review Thinh Nguyen. Probability Theory Review Sample space Bayes’ Rule Independence Expectation Distributions.
CS433 Modeling and Simulation Lecture 13 Queueing Theory Dr. Anis Koubâa 03 May 2009 Al-Imam Mohammad Ibn Saud University.
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
Queueing Analysis of Production Systems (Factory Physics)
Analysis of M/M/c/N Queuing System With Balking, Reneging and Synchronous Vacations Dequan Yue Department of Statistics, College of Sciences Yanshan University,
Introduction to Queueing Theory
Queuing Theory Basic properties, Markovian models, Networks of queues, General service time distributions, Finite source models, Multiserver queues Chapter.
1 Queuing Models Dr. Mahmoud Alrefaei 2 Introduction Each one of us has spent a great deal of time waiting in lines. One example in the Cafeteria. Other.
1 Elements of Queuing Theory The queuing model –Core components; –Notation; –Parameters and performance measures –Characteristics; Markov Process –Discrete-time.
State N 2.6 The M/M/1/N Queueing System: The Finite Buffer Case.
Chapter 01 Probability and Stochastic Processes References: Wolff, Stochastic Modeling and the Theory of Queues, Chapter 1 Altiok, Performance Analysis.
M/M/1 Queues Customers arrive according to a Poisson process with rate. There is only one server. Service time is exponential with rate  j-1 jj+1...
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Waiting Line Analysis for Service Improvement Operations Management.
Structure of a Waiting Line System Queuing theory is the study of waiting lines Four characteristics of a queuing system: –The manner in which customers.
Copyright ©: Nahrstedt, Angrave, Abdelzaher, Caccamo1 Queueing Systems.
1 1 Slide Chapter 12 Waiting Line Models n The Structure of a Waiting Line System n Queuing Systems n Queuing System Input Characteristics n Queuing System.
Adeyl Khan, Faculty, BBA, NSU Elements of Queuing System ArrivalsServiceWaiting line Exit Processing order System.
Chapter 5 Elementary Stochastic Analysis Prof. Ali Movaghar.
© 2015 McGraw-Hill Education. All rights reserved. Chapter 17 Queueing Theory.
Random Variables r Random variables define a real valued function over a sample space. r The value of a random variable is determined by the outcome of.
Simple Queueing Theory: Page 5.1 CPE Systems Modelling & Simulation Techniques Topic 5: Simple Queueing Theory  Queueing Models  Kendall notation.
Module D Waiting Line Models.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 18 Management of Waiting Lines.
WAITING LINES AND SIMULATION
Demo on Queuing Concepts
Lecture on Markov Chain
Finite M/M/1 queue Consider an M/M/1 queue with finite waiting room.
ECE 358 Examples #1 Xuemin (Sherman) Shen Office: EIT 4155
Queueing Theory Carey Williamson Department of Computer Science
Introduction Notation Little’s Law aka Little’s Result
Solutions Queueing Theory 1
Queueing Theory II.
Solutions Queueing Theory 1
Queuing Theory By: Brian Murphy.
Waiting Lines Waiting lines are non-value added occurrences.
Introduction to Queueing Theory
Solutions Queueing Theory 1
Carey Williamson Department of Computer Science University of Calgary
Waiting Line Models Waiting takes place in virtually every productive process or service. Since the time spent by people and things waiting in line is.
LECTURE 09 QUEUEING THEORY PART3
Presentation transcript:

Lecture 10 Queueing Theory

There are a few basic elements common to almost all queueing theory application. Customers arrive, they wait for service in one or more queues, they receive some service and they leave. The relationship between arrivals, number of customers in a system and time in the system is given in the simple expression, Introduction where, L = the average number of customers in the system = the average arrival rate of entering customers W = the average amount of time that a customer spends in the system (1) Excerpts from: Introduction to Probability Models, S. M. Ross, Academic Press

Variations include systems with an infinite queue, systems with a finite queue, and systems with no queue. We will first study single-server, single-queue systems with infinite queue capacity. We will assume that the arrival time of the next customer is random with a measurable average arrival rate. This is called a Poisson (also Markovian or memoryless) process with an arrival rate of. We will also assume an exponentially distributed service rate with mean, µ. Variations on a Theme arriving customers queue server served customer leaves system the "system" a L...

We will define the state of a system by the number of customers in the system. So that a system in state S 0 is empty, a system in state S 1 contains a single customer and a system in state S n contains n customers. When customers first begin arriving, the system begins to fill with customers. If the arrival rate exceeds the service rate µ, the number of customers in the system will continue to grow without limit. (not interesting) On the other hand, if the service rate is greater than or equal to the arrival rate, the number of customers in the system will begin to level off or to achieve a steady state. We are interested in knowing the average number of customers in the system and the average time a customer must spend in the system when it is in its steady state. State of the System a L...

Let us assume that we know the arrival and service rates for a single-server system in the steady state. We want to derive the quantities L and W in terms of and µ. We will use the principle of balance to help us in this derivation: For any system in the steady state, the rate at which it enters a state Sn equals the rate at which it leaves that state. The principle of balance can also be described in terms of the probability or proportion of time a system is in a particular state. If all proportions are constant, which they must be in the steady state, the rate of arrival of the system into a state must equal the rate of departure of the system from that state. First we look at a system entering and leaving the state S 0. Our first balance equation becomes, The Principle of Balance in which the left side represents the rate at which the system changes from state S 0 to state S 1 and the right side represents the rate at which the system changes from state S 1 to state S 0. S0S0 S1S1 (2)

In a similar manner we can equate the rates at which a system can enter and leave any other state S n. A system may leave the state S n either by gaining or losing a customer. So the rate at which a system leaves state S n is given by, The rate at which a system enters the state S n is combination of the rate of customer arrivals to a state S n-1 and customer departures from a state S n+1 or,. The balance equation for state S n is therefore, The General Case (3)

We can use Equation 2 to derive P 1 in terms of P 0, and we can use Equation 3 to derive P n in terms of P n-1. Which in tern can be manipulated to obtain an expression relating P n to P 0, and µ. Recurrence Relations to the Rescue (4) Since every system must be in some state, the sum of all the proportions P n is equal to unity. (5) Finally the infinite series x n has a closed form 1/(1-x) for x<1. Therefore, if the service rate is greater than the arrival rate we have, (6)

A Matter of Space (for Customers) and (Waiting) Time Now that we have the proportions P n in terms of the arrival and service rates we can return to our original goal of deriving L and W. The average number of customers in the system can be determined by multiplying the proportion of time there are n customers in the system by that number of customers and then adding up these products for all n. (7) Using another infinite series identity, nx n = x/(1-x) 2, we can rewrite the equations in 7 as, and (8)(9)

The Case of a Finite Queue Size Previously, we assumed that the queue could be arbitrarily large (infinite queue capacity). Now, we will address the somewhat more realistic problem in which there is a limit to the number of waiting customers (i.e. a finite queue capacity). Some preliminary assumptions should be addressed. First, we want to consider only those customers that enter the system to contribute to the customer arrival rate. We will assume that any customers appearing when the queue is full will go away. (More on this later.) Next, we will assume that the system capacity is N, meaning the maximum number of customers in the system, both waiting and being served. Therefore, for a single-stage, single-server system, the queue capacity will be N-1. a L

The Case of a Finite Queue Size Previously, we assumed that the queue could be arbitrarily large (infinite queue capacity). Now, we will address the somewhat more realistic problem in which there is a limit to the number of waiting customers (i.e. a finite queue capacity). Some preliminary assumptions should be addressed. First, we want to consider only those customers that enter the system to contribute to the customer arrival rate. We will assume that any customers appearing when the queue is full will go away. Next, we will assume that the system capacity is N, meaning the maximum number of customers in the system, both waiting and being served. Therefore, for a single-stage, single-server system, the queue capacity will be N-1. a L

We start our analysis of finite capacity queueing systems with a return to the balance equations. Again we define the state of the system by the number of customers in the system. Back to the Balance Equations S0S0 S1S1 S2S2 S N-1 SNSN... (10)

As before we can develop a recurrence relation to express all proportions P n in terms of P 0. More Scary Math and since P n =1, we have Using the series identity, gives, By substituting Equation (14) back into Equation (11) we obtain, (11) (12) (13) (14) (15)

Since our queue size is finite, we do not have to ensure that the service rate exceed the arrival rate to maintain a steady-state condition. The customers that arrive when the queue is full, just go away. As before, the average number of customers in the system L is given by the number of customers in each state times the proportion of time the system is in each state. A New L and W which you may wish to verify is equivalent to, and even more algebra fun reveals that

A Smaller We need to be careful about what we mean by our arrival rate. Since the rate includes some customers that never enter the system, we will have to reduce our effective arrival rate by the number of customers that go away. The proportion of customers that go away is equal to the proportion that arrive when the system is full, or P N. The rate at which customers actually enter the system is, therefore, e = (1-P N )