Matter evolution in A+A collisions in the light of recent ALICE LHC results Yu. M. Sinyukov Bogolyubov Institute for Theoretical Physics NPQCD May 3 -

Slides:



Advertisements
Similar presentations
Further development of the HydroKinetic Model (hHKM) and description of the RHIC and LHC A+A data Yu. M. Sinyukov Bogolyubov Institute for Theoretical.
Advertisements

Marcus Bleicher, Berkeley, Oct Elliptic Flow in High Energetic Nuclear Collisions Marcus Bleicher & Xianglei Zhu FIAS & Institut für Theoretische.
Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
LP. Csernai, Sept. 4, 2001, Palaiseau FR 1 L.P. Csernai, C. Anderlik, V. Magas, D. Strottman.
Effects of Bulk Viscosity on p T -Spectra and Elliptic Flow Parameter Akihiko Monnai Department of Physics, The University of Tokyo, Japan Collaborator:
Hadronic dissipative effects on transverse dynamics at RHIC Tetsufumi Hirano Dept. of Physics The Univ. of Tokyo QM2008, Feb. 4-10, 2008 TH, U.Heinz, D.Kharzeev,
Mass ordering of differential elliptic flow and its violation for  mesons Tetsufumi Hirano Dept. of Physics, The Univ. of Tokyo Matsumoto, Feb ,
Kaon and pion femtoscopy in the hydrokinetic model of ultrarelativistic heavy-ion collisions Yu. M. Sinyukov Bogolyubov Institute for Theoretical Physics,
Phase transition of hadronic matter in a non-equilibrium approach Graduate Days, Frankfurt, , Hannah Petersen, Universität Frankfurt.
First Results From a Hydro + Boltzmann Hybrid Approach DPG-Tagung, Darmstadt, , Hannah Petersen, Universität Frankfurt.
Nantes June 15, 2009 GDRE Spectra and space-time scales in relativistic heavy ion collisions: the results based on HydroKinetic Model (HKM) Based.
CERN May Heavy Ion Collisions at the LHC Last Call for Predictions Initial conditions and space-time scales in relativistic heavy ion collisions.
Wolfgang Cassing CERN, Properties of the sQGP at RHIC and LHC energies.
CERN May Heavy Ion Collisions at the LHC Last Call for Predictions Interferometry signatures of new states in hydrodynamic picture of A+A collision.
Freeze-Out in a Hybrid Model Freeze-out Workshop, Goethe-Universität Frankfurt Hannah Petersen.
Marcus Bleicher, WWND 2008 A fully integrated (3+1) dimensional Hydro + Boltzmann Hybrid Approach Marcus Bleicher Institut für Theoretische Physik Goethe.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
Has the critical temperature of the QCD phase transition been measured ?
Space time evolution of QCD matter Parton cascade with stochastic algorithm Transport rates and momentum isotropization Thermalization of gluons due to.
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Radial flow fluctuations:
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Transverse flow fluctuations:
Effects of Bulk Viscosity at Freezeout Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano Nagoya Mini-Workshop.
S C O T T PRATPRAT MICHIGANMICHIGAN S T T E UNIVRSITYUNIVRSITY T H BTBT PUZZLE PUZZLE Z A N D E X T E N D I N G HYRODYNAMICS HYRODYNAMICS.
Sept WPCF-2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev Based on: Yu.S., I. Karpenko,
In collaboration with V. Shapoval, Iu.Karpenko Yu.M. Sinyukov, BITP, Kiev WPCF-2012 September 09 – FIAS Frankfurt.
KROMĚŘĺŽ, August 2005WPCF Evolution of observables in hydro- and kinetic models of A+A collisions Yu. Sinyukov, BITP, Kiev.
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Radial flow fluctuations:
Longitudinal de-correlation of anisotropic flow in Pb+Pb collisions Victor Roy ITP Goethe University Frankfurt In collaboration with L-G Pang, G-Y Qin,
Workshop for Particle Correlations and Femtoscopy 2011
Jaipur February 2008 Quark Matter 2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev (with participation.
Relativistic Hydrodynamics T. Csörgő (KFKI RMKI Budapest) new solutions with ellipsoidal symmetry Fireball hydrodynamics: Simple models work well at SPS.
Shear Viscosity and Viscous Entropy Production in Hot QGP at Finite Density 报告人: 刘 绘 华中师范大学 粒子所.
Effects of bulk viscosity in causal viscous hydrodynamics Jianwei Li, Yugang Ma and Guoliang Ma Shanghai Institute of Applied Physics, CAS 1. Motivation.
Non-equilibrium approaches to the pre- thermal and post-hadronisation stages of A+A collisions Yu. Sinyukov, BITP, Kiev In collaboration with S. Akkelin.
LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
Does HBT interferometry probe thermalization? Clément Gombeaud, Tuomas Lappi and J-Y Ollitrault IPhT Saclay WPCF 2009, CERN, October 16, 2009.
Partial thermalization, a key ingredient of the HBT Puzzle Clément Gombeaud CEA/Saclay-CNRS Quark-Matter 09, April 09.
Dynamical equilibration of strongly- interacting ‘infinite’ parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein,
Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS 1 / Masashi Kaneta LBNL
PHOTONS AND EVOLUTION OF A CHEMICALLY EQUILIBRATING AND EXPANDING QGP AT FINITE BARYON DENSITY Shanghai Institute of Applied Physics Jiali Long, Zejun.
A Blast-wave Model with Two Freeze-outs Kang Seog Lee (Chonnam Nat’l Univ.)  Chemical and thermal analysis, done in a single model HIM
Scaling of Elliptic Flow for a fluid at Finite Shear Viscosity V. Greco M. Colonna M. Di Toro G. Ferini From the Coulomb Barrier to the Quark-Gluon Plasma,
Elliptic flow and shear viscosity in a parton cascade approach G. Ferini INFN-LNS, Catania P. Castorina, M. Colonna, M. Di Toro, V. Greco.
Results from an Integrated Boltzmann+Hydrodynamics Approach WPCF 2008, Krakau, Jan Steinheimer-Froschauer, Universität Frankfurt.
Two freeze-out model for the hadrons produced in the Relativistic Heavy-Ion Collisions. New Frontiers in QCD 28 Oct, 2011, Yonsei Univ., Seoul, Korea Suk.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
School of Collective Dynamics in High-Energy CollisionsLevente Molnar, Purdue University 1 Effect of resonance decays on the extracted kinetic freeze-out.
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
HIM06-12 SHLee1 Some Topics in Relativistic Heavy Ion Collision Su Houng Lee Yonsei Univ., Korea 1.J. P. Blaizot 2.J. Kapusta 3.U. A. Wiedemann.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Budapest, 4-9 August 2005Quark Matter 2005 HBT search for new states of matter in A+A collisions Yu. Sinyukov, BITP, Kiev Based on the paper S.V. Akkelin,
Implications for LHC pA Run from RHIC Results CGC Glasma Initial Singularity Thermalized sQGP Hadron Gas sQGP Asymptotic.
PhD student at the International PhD Studies Institute of Nuclear Physics PAN Institute of Nuclear Physics PAN Department of Theory of Structure of Matter.
Energy dependence of interferometry scales in ultrarelativistic heavy-ion collisions Yu. M. Sinyukov Bogolyubov Institute for Theoretical Physics, Kiev.
Particle emission in hydrodynamic picture of ultra-relativistic heavy ion collisions Yu. Karpenko Bogolyubov Institute for Theoretical Physics and Kiev.
QM08, Jaipur, 9 th February, 2008 Raghunath Sahoo Saturation of E T /N ch and Freeze-out Criteria in Heavy Ion Collisions Raghunath Sahoo Institute of.
A generalized Buda-Lund model M. Csanád, T. Csörgő and B. Lörstad (Budapest & Lund) Buda-Lund model for ellipsoidally symmetric systems and it’s comparison.
Jet fragmentation photons in ultrarelativistic heavy-ion collisions Koichi Hattori, Larry McLerran, Bjoern Schenke Quark Matter Sep Oct.
Elliptic flow from initial states of fast nuclei. A.B. Kaidalov ITEP, Moscow (based on papers with K.Boreskov and O.Kancheli) K.Boreskov and O.Kancheli)
Review of ALICE Experiments
Hydro + Cascade Model at RHIC
Collective Dynamics at RHIC
Anisotropic flow at RHIC: How unique is the NCQ scaling ?
Effects of Bulk Viscosity at Freezeout
by Qingfeng Li FIAS/Frankfurt & Huzhou)
Effects of Bulk Viscosity on pT Spectra and Elliptic Flow Coefficients
of Hadronization in Nuclei
Dipartimento Interateneo di Fisica, Bari (Italy)
Presentation transcript:

Matter evolution in A+A collisions in the light of recent ALICE LHC results Yu. M. Sinyukov Bogolyubov Institute for Theoretical Physics NPQCD May 3 - 6, 2011

Soft Physics measurements 2 xLxL t A A ΔωKΔωK p=(p 1 + p 2 )/2 q= p 1 - p 2 QS correlation function Space-time structure of the matter evolution: Landau, 1953 p p1p1 p2p2 Long Side Out BW lengths of homogeneity in expanding system Radial flow xTxT

The evidences of space-time evolution of the thermal matter in A+A collisions: Rough estimate of the fireball lifetime for Au+Au Gev: In p+p all femto-scales are A+A is not some kind of superposition of the of order 1 fm ! individual collisions of nucleons of nuclei The phenomenon of space-time evolution of the strongly interacting matter in A+A collisions Particle number ratios are well reproduced in ideal gas model with 2 parameters: T, for collision energies from AGS to RHIC: thermal+chemical equilibrium What is the nature of this matter at the early collision stage? Whether does the matter becomes thermal?

Collective expansion of the fireball. Observation of the longitudinal expansion: It was conformed by NA35/NA49 Collaborations (CERN), 1995 ! Observation of transverse (radial) collective flows: Effective temperature for different particle species (non-relativistic case) : radial collective flow Observation of elliptic flows: HYDRODYNAMICS !

Does hydro work at LHC 5 The ALICE experiment suggests that the quark-gluon plasma remains a strongly coupled liquid, even at temperatures that are 30% greater than what was available at RHIC. The plot shows the elliptic flow parameter v2 (a measure of the coupling in the plasma) at different heavy-ion collision energies, based on several experiments (including the new data from ALICE [1] ) E. Shuryak, Physics 3,105 (2010) [1] K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett. 105, (2010). ?

6 Expecting Stages of Evolution in Ultrarelativistic A+A collisions Early thermalization at 0.5 fm/c 0.2?(LHC) Elliptic flows t Relatively small space-time scales, R out /R side ~ 1 (HBT puzzle) Early thermal freeze-out: T_th Tch 150 MeV 8-20 fm/c 7-8 fm/c 1-3 fm/c or strings

7 Interferometry radii Borysova, Yu.S., Akkelin,Erazmus, Karpenko: PRC 73, (2006)

8 Duration of particle emission is taken into account by means of enclosed freeze-out hypersurface: v i =0.35 volume emission surface emission

9 Ro/Rs ratio and initial flows

10

Collective velocities developed between =0.3 and =1.0 fm/c Collective velocity developed at pre-thermal stage from proper time tau_0 =0.3 fm/c by supposed thermalization time tau_th = 1 fm/c for scenarios of partonic free streaming and free expansion of classical field. The results are compared with the hydrodynamic evolution of perfect fluid with hard equation of state p = 1/3 epsilon started at. Impact parameter b=0. Yu.S. Acta Phys.Polon. B37 (2006) 3343; Gyulassy, Yu.S., Karpenko, Nazarenko Braz.J.Phys. 37 (2007) Yu.S., Nazarenko, Karpenko: Acta Phys.Polon. B (2009). Central collisions

Collective velocity developed at pre-thermal stage from proper time =0.3 fm/c by supposed thermalization time tau_i = 1 fm/c for scenarios of partonic free streaming. The results are compared with the hydrodynamic evolution of perfect fluid with hard equation of state p = 1/3 epsilon started at. Impact parameter b=6.3 fm. Collective velocities and their anisotropy developed between =0.3 and =1.0 fm/c Non-central collisions b=6.3 fm

13 Hydrodynamic expansion: gradient pressure acts Free streaming: Gradient of density leads to non-zero collective velocities For nonrelativistic gas So, even if and : Yu.S. Acta Phys.Polon. B37 (2006) 3343; Gyulassy, Yu.S., Karpenko, Nazarenko Braz.J.Phys. 37 (2007) :at For thermal and non-thermal expansion In the case of thermalization at later stage it leads to spectra anisotropy Basic ideas for the early stage: developing of pre-thermal flows

Summary-1 Yu.S., Nazarenko, Karpenko: Acta Phys.Polon. B (2009) 14 The initial transverse flow in thermal matter as well as its anisotropy are developed at pre-thermal - either partonic, string or classical field (glasma) - stage with even more efficiency than in the case of very early perfect hydrodynamics. Such radial and elliptic flows develop no matter whether a pressure already established. The general reason for them is an essential finiteness of the system in transverse direction. The anisotropy of the flows transforms into asymmetry of the transverse momentum spectra only of (partial) thermalization happens. So, the results, first published in 2006, show that whereas the assumption of (partial) thermalization in relativistic A + A collisions is really crucial to explain soft physics observables, the hypotheses of early thermalization at times less than 1 fm/c is not necessary.

15 Akkelin, Yu.S. PRC 81, (2010) If some model (effective QCD theory) gives us the energy-momentum tensor at time, one can estimate the flows and energy densities at expected time of thermalization, using hydrodynamic equation with (known) source terms. This phenomenological approach is motivated by Boltzmann equations, accounts for the energy and momentum conservation laws and contains two parameters: supposed time of thermalization and initial relaxation time. where IC:Eqs: Matching of nonthermal initial conditions and hydrodynamic stage

16

t x T ch Locally (thermally & chemically) equilibrated evolution and initial conditions (IC) IC for central Au+Au collisions The effective" initial distribution is the one which being used in the capacity of initial condition bring the average hydrodynamic results for fluctuating initial conditions: I. Initial rapidity profiles: and are only fitting parameters in HKM is Glauber-like profile II. is CGC-like profile where

Equation of state in (almost) equilibrated zone 18 EoS from LattQCD (in form proposed by Laine & Schroder, Phys. Rev. D73, 2006). MeV Crossover transition, LattQCD is matched with an ideal chemically equilibrated multicomponent hadron resonance gas at Particle number ratios are baryon number and strangeness susceptibilities F. Karsch, PoS CPOD07:026, 2007

t x T ch

Cooper-Frye prescription (CFp) t z t r CFp gets serious problems: Freeze-out hypersurface contains non-space-like sectors artificial discontinuities appears across Sinyukov (1989), Bugaev (1996), Andrelik et al (1999); cascade models show that particles escape from the system about whole time of its evolution. Hybrid models (hydro+cascade) and the hydro method of continuous emission starts to develop.

Hybrid models: HYDRO + UrQMD ( Bass, Dumitru (2000) ) t z t r The problems: the system just after hadronization is not so dilute to apply hadronic cascade models; hadronization hypersurface contains non-space-like sectors (causality problem: Bugaev, PRL 90, , 2003); The average energy density and pressure of input UrQMD gas should coincide with what the hadro gas has just before switching. At r-periphery of space-like hypsurf. the system is far from l.eq. t HYDRO UrQMD The initial conditions for hadronic cascade models should be based on non-local equilibrium distributions

Possible problems of matching hydro with initially bumping IC The example of boost-invariant hydroevolution for the bumping IC with four narrow high energy density tubes (r= 1 fm) under smooth Gaussian background (R=5.4 fm) RIDGES?

Continuous Emission Hydrokinetic approach t x F. Grassi, Y. Hama, T. Kodama (1995) The evolution of the single finite system of hadrons cannot be split into the two compo- nents: expansion of the interacting locally equi- librated medium and a free stream of emitted particles, which the system consists of. Such a splitting, accounting only for the momentum- energy conservation law, contradicts the unde- rlying dynamical equations such as a Boltzmann one. Yu.S., Akkelin, Hama: PRL 89, (2002 )

Yu.S., Akkelin, Hama: PRL 89, (2002); + Karpenko: PRC 78, (2008). Hydro-kinetic approach MODEL is based on relaxation time approximation for emission function of relativistic finite expanding system; provides evaluation of emission function based on escape probabilities with account of deviations (even strong) of distribution functions [DF] from local equilibrium; o accounts for conservation laws: back reaction of the particle emission to the hydro-evolution at the particle emission; Complete algorithm includes: solution of equations of ideal hydro; calculation of non-equilibrium DF and emission function in first approximation; solution of equations for ideal hydro with non-zero left-hand-side that accounts for conservation laws for non-equilibrium process of the system which radiated free particles during expansion; Calculation of exact DF and emission function; Evaluation of spectra and correlations.

and are G(ain), L(oss) terms for p. species Boltzmann eqs (differential form) Probability of particle free propagation (for each component ) Boltzmann equations and probabilities of particle free propagation

84 Boltzmann eqs (integral form) Spectra and Emission function Index is omitted everywhere Spectrum Relax. time approximation for emission function (Yu.S., Akkelin, Hama PRL, 2002) For (quasi-) stable particles

Kinetics and hydrodynamics below T ch =165 MeV For hadronic resonances & where

Equation of state in non-equilibrated zone EoS MeV Pressure and energy density of multi- component Boltzmann gas At hypersurface the hadrons are in chemical equilibrium with some barionic chemical potential which are defind from particle number ratio (conception of chemical freeze-out). Below we account for the evolution of all N densities of hadron species in hydro calculation with decay resonances into expanding fluid, and compute EoS dynamically for each chemical composition of N sorts of hadrons in every hydrodynamic cell in the system during the evolution. Using this method, we do not limit ourselves by chemically frozen or chemically equilibrated evolution, keeping nevertheless thermodynamically consistent scheme.

EoS used in HKM calculations for the top RHIC energy The gray region consists of the set of the points corresponding to the different hadron gas compositions at each occurring during the late nonequilibrium stage of the evolution.

88 System's decoupling and spectra formation Emission function For pion emission is the total collision rate of the pion, carrying momentum p with all the hadrons h in the system in a vicinity of point x. is the space-time density of pion production caused by gradual decays during hydrodynamic evolution of all the suitable resonances H including cascade decays The cross-sections in the hadronic gas are calculated in accordance with UrQMD.

Iu. Karpenko, Yu.S. PRC 81, (2010)

PARAMETERS for the RHIC TOP ENERGY In CGC approach at RHIC energies this energy density corresponds to the value Fitting parameter at In CGC approach at RHIC energies the value is used (T. Lappi, J.Phys. G, 2008) Max initial energy density Initial transverse flows Glauber IC 16.5 GeV/fm CGC IC 19.5 GeV/fm Parameter absorbs unknown portion of the prethermal flows, the viscosity effects in the QGP and, in addition, the event-by-event fluctuations of the initial conditions which also lead to an increase of the effective transverse flows in the observed inclusive spectra.

Pion, kaon and proton emission densities (Gaussian IC, vacuum c.s.) 93 T=145 MeV T=80 MeV At the point of maximal pion emission P

Conclusion for RHIC The HKM allows one to restore the initial conditions and space-time picture of the matter evolution in central Au + Au collisions at the top RHIC energy. The analysis, which is based on a detailed reproduction of the pion and kaon momentum spectra and measured femtoscopic scales, demonstrates that basically the pictures of the matter evolution and particle emission are similar at both Glauber and CGC IC with, however, different initial maximal energy densities: it is about 20% more for the CGC IC. The process of decoupling the fireballs created in Au + Au collision lasts from about 8 to 20 fm/c, more than half the fireballs total lifetime. The temperatures in the regions of the maximal emission are different at the different transverse momenta of emitting pions: T 75–110 MeV for pT = 0.2 GeV/c and T 130–135 MeV for pT = 1.2GeV/c. A comparison of the pion and kaon emissions at the same transverse mass demonstrates the similarity of the positions of emission maxima, which could point out to the reason for an approximate m T -scaling.

Iu. Karpenko, Yu.S. PLB 688, 50 (2010) Predictions for LHC and comparison with the ALICE results

essentially non-flat initial energy density distributions (Gaussian, Glauber, CGC); more hard transition EoS, corresponding to cross-over (not first order phase transition!); fairly strong transverse flow at the late stage of the system evolution. It is caused by: developing of flows at very early pre-thermal stage; additional developing of transv. flow due to shear viscosity (Teaney, 2003); effective increase of transv. flow due to initially bumping structure (Grassy, Hama, Kodama – 2008) ; + correct description of evolution and decay of strongly interacting and chemically/thermally non-equilibrated system after hadronisation! Karpenko, Yu.S. PRC 81, (2010) The following factors allows to describe the space- time scales of emission and Rout/Rside ratio: Akkelin, Hama, Karpenko, Yu.S, PRC 78, (2008)

Initial conditions for different collision energies Fitting parameter at Glauber IC Max initial energy density Initial transverse flows SPS top energy 9.0 GeV/fm RHIC top energy 16.5 GeV/fm LHC-1 40 GeV/fm LHC-2 40 GeV/fm Parameter absorbs unknown portion of the prethermal flows, the viscosity effects in the QGP and, in addition, the event-by-event fluctuations of the initial conditions which also lead to an increase of the effective transverse flows in the observed inclusive spectra. For sqrt(s)=2.76 ATeVFor LHC-1

Pion spectra at top SPS, RHIC and two LHC energies in HKM

Side- radii at top SPS, RHIC and two LHC energies in HKM The ALICE Collaboration, Phys. Lett. B696, 328 (2011)

Out- radii at top SPS, RHIC and two LHC energies in HKM 100

- Long-radii at top SPS, RHIC and two LHC energies in HKM ~20% less

Out-to-side ratio

Comparison with others model predictions

The ratio as function on initial energy density At some p For details see Iu. Karpenko, Yu.S. PLB 688, 50 (2010)

Emission functions for top SPS, RHIC and LHC energies

LHC HBT Puzzle (?)

Hybrid HKM (first results) 107

Nantes July 15, Role of non-dissipative stage in formation of large Vint at LHC

Conclusion for femtoscopy at LHC The main mechanisms, that were considering as explaning the paradoxical behavior of the interferometry scales, are conformed experimentally by ALICE LHC. In particular, decrease of ratio with growing energy and saturation of the ratio at large energies happens due to a magnification of positive correlations between space and time positions of emitted pions and a developing of pre-thermal collective transverse flows. Some underestimate of overall value of the radii (interferometry volume probably can be solved in HKM by switching to UrQMD at the temperatures MeV. Viscosity in QGP should be included in the model. Non-thermal stage at the late times play an important role at LHC. Event by event analysis.

THANK YOU ! 110

BACK UP SLIDES

Momentum transverse spectra of protons in HKM for top RHIC energy and different types of profiles (CGC and Glauber) of initial energy density without and with including of the mean field effect for protons (12% of the proton transverse rapidity field off in the interval (0-1))

Generalized Cooper-Frye prescription: IF for each momentum p, there is a region of r where the emission function has a sharp maximum with temporal width. The width of the maximum, which is just the relaxation time ( inverse of collision rate), should be smaller than the corresponding temporal homogeneity length of the distribution function: (1% accuracy!!!) Then the momentum spectra can be presented in Cooper-Frye form despite it is, in fact, not sadden freeze-out and the decaying region has a finite temporal width. Also, what is important, such a generalized Cooper-Frye representation is related to freeze-out hypersurface that depends on momentum p and does not necessarily encloses the initially dense matter. Akkelin, Hama, Karpenko, Yu.S, PRC 78, (2008) Yu.S., Akkelin, Karpenko Act. Phys. Polon. 40, 1025 (2009)

The pion emission function for different pT in hydro-kinetic model (HKM) The isotherms of 80 MeV is superimposed.

The pion emission function for different pT in hydro-kinetic model (HKM). The isotherms of 135 MeV (bottom) is superimposed.

Transverse momentum spectrum of pi in HKM, compared with the sudden freeze-out ones at temperatures of 80 and 160 MeV with arbitrary normalizations.

Dnepropetrovsk May NPQCD Saddle point approximation Emission density Spectrum where Normalization condition Eqs for saddle point : Physical conditions at

Dnepropetrovsk May NPQCD Cooper-Frye prescription Spectrum in new variables Emission density in saddle point representation Temporal width of emission Generalized Cooper-Frye f-la

Nov 3-6 RANP Generalized Cooper-Frye prescription: 119 r t 0 Escape probability Yu.S. (1987)-particle flow conservation; K.A. Bugaev (1996) (current form)

Nov 3-6 RANP Momentum dependence of freeze-out Here and further for Pb+Pb collisions we use: initial energy density EoS from Lattice QCD when T< 160 MeV, and EoS of chemically frozen hadron gas with 359 particle species at T< 160 MeV. Pt-integrated

Dnepropetrovsk May NPQCD Conditions for the utilization of the generalized Cooper-Frye prescription i)For each momentum p, there is a region of r where the emission function has a sharp maximum with temporal width. ii) The width of the maximum, which is just the relaxation time ( inverse of collision rate), should be smaller than the corresponding temporal homogeneitylength of the distribution function: 1% accuracy!!! iii) The contribution to the spectra from the residual region of r where the saddle point method is violated does not affect essentially the particle momentum spectrum. Then the momentum spectra can be presented in Cooper-Frye form despite it is, in fact, not sadden freeze-out and the decaying region has a finite temporal width. Also, what is very important, such a generalized Cooper-Frye representation is related to freeze-out hypersurface that depends on momentum p and does not necessarily encloses the initially dense matter. iiii) The escape probabilities for particles to be liberated just from the initial hyper-surface t0 are small almost in the whole spacial region (except peripheral points)

122 Conclusions The CFp might be applied only in a generalized form, accounting for the direct momentum dependence of the freeze-out hypersurface corresponding to the maximum of the emission function at fixed momentum p in an appropriate region of r.