Figure 2. Snapshot of the CandidaOrfDB interface

Slides:



Advertisements
Similar presentations
Figure 1. Schematic of the corA leader mRNA
Advertisements

Figure 1. AsCpf1 and LbCpf1-mediated gene editing in human cells
From: Introducing the PRIDE Archive RESTful web services
Figure 1. Accumulated recoding covering 200 kb of the S
Figure 1. The flow chart illustrates the construction process of anti-CRISPRdb, and the information that users can obtain from anti-CRISPRdb. From: Anti-CRISPRdb:
Figure 1. (A) The VEGF promoter PQS and scheme of G oxidation to OG, as well as (B) the proposed APE1-dependent pathway ... Figure 1. (A) The VEGF promoter.
Figure 1. Sgs1 binds to RPA-coated ssDNA
Figure 1. Circular taxonomy tree based on the species that were sequenced in our study. Unless provided in the caption above, the following copyright applies.
Figure 1. An example of a thioviridamide-like molecule, thioalbamide, and inset, a proposed biochemical route to ... Figure 1. An example of a thioviridamide-like.
Figure 1. Effect of recombinantly expressed RNase T on growth behavior of E. coli. Growth was assessed for E. coli ... Figure 1. Effect of recombinantly.
Figure 1. Overview of the workflow of NetworkAnalyst 3.0.
Figure 1 The study area within Vienna Zoo is outlined in red
Figure 7. Primary cells from prostate tumours are more sensitive to ML than adjacent non-cancerous cells from the ... Figure 7. Primary cells from.
Figure 1. Aminoacylation of 3′-NH2-tRNA catalyzed by flexizymes
Figure 1. Effect of random T/A→dU/A substitutions on transcription by T7 RNAP using a 321 bp DNA transcription template ... Figure 1. Effect of random.
Figure 1. Site-specific replication fork stalling at Tus/Ter barriers causes localized mutagenesis. (A) Schematic ... Figure 1. Site-specific replication.
Figure 1. Zebrafish Sas10 and Mpp10 are nucleolar proteins and display dynamic expression patterns during early ... Figure 1. Zebrafish Sas10 and Mpp10.
Figure 6. HU sensitivity is due to the failure to process multiple consecutive ribonucleotides. 10-fold serial ... Figure 6. HU sensitivity is due to the.
Figure 1. BRCA1-associated R-Loop accumulation at a non-coding region upstream of ESR1 locus. (A) Alignment of DRIP-seq ... Figure 1. BRCA1-associated.
Figure 1. Designing a cell-specific Cas-ON switch based on miRNA-regulated anti-CRISPR genes. (A) Schematic of the ... Figure 1. Designing a cell-specific.
Figure 1. Ratios of observed to expected numbers of exon boundaries aligning to boundaries of domain and disorder ... Figure 1. Ratios of observed to expected.
Figure 1. autoMLST workflow depicting placement and de novo mode
Figure 1. The 12 species in this study and details of the improved G4-seq method. (A) Phylogenetic representation of ... Figure 1. The 12 species in this.
Figure 2. ChvR expression is controlled by the ChvI-ChvG TCS
Figure 1. Nanopore methylation calls are consistent with expected results and established technologies. (A) Metaplot of ... Figure 1. Nanopore methylation.
Fig. 1 Kaplan-Meier plot of cumulative incidence of cancer onset following dermatomyositis diagnosis stratified ... Anti-TIF1-Ab: anti-transcriptional.
Figure 1. Chemical structures of DNA and tc-DNA
Figure 1. Genetic tools used for perturbing cellular ppGpp levels in this study. The wild type E. coli cell has two ... Figure 1. Genetic tools used for.
Point estimates with ... Point estimates with 95% CI. HR: hip replacement; KR: knee replacement. Unless provided in the caption above, the following copyright.
FIGURE 1 Participant flow diagram. Exercise Counseling Clinic (ECC).
Graph 1. The number of homicide cases per year discussing neuro-evidence. Unless provided in the caption above, the following copyright applies to the.
Figure 1. Analysis of human TRIM5α protein with Blast-Search and PhyML+SMS ‘One click’ workflow. (A) NGPhylogeny.fr ... Figure 1. Analysis of human TRIM5α.
Figure 1 Nelson-Aalen estimates of the cumulative incidence rates for patients on versus off IST. ON = optic neuritis; ... Figure 1 Nelson-Aalen estimates.
FIGURE 1 Malta: a plate-style food guide
Figure 1. A, Crude incidence rates per 100 person-years of follow-up and 95% confidence intervals for each solid organ ... Figure 1. A, Crude incidence.
FIGURE 1 Study consort diagram
Figure 1. Illustration of DGR systems and their prediction using myDGR
Figure 1. The workflow of Cistrome-GO
Figure 1. Prediction result for birch pollen allergen Bet v 1 (PDB: 1bv1), as obtained by comparison to the cherry ... Figure 1. Prediction result for.
Figure 1. Using Voronoi tessellation to define contacts
Figure 1. Designed cotranscriptional RNA structures
Fig. 1. iS-CellR pipeline overview
Figure 4. RLS spectra of (A) TMPipEOPP and (B) OMHEPzEOPP in the presence of different concentrations of KRAS. The RLS ... Figure 4. RLS spectra of (A)
Figure 1. PaintOmics 3 workflow diagram
Figure 1. Uncertainty reduction, value creation, and appropriation in two case studies. Unless provided in the caption above, the following copyright applies.
Figure 1. ULS1 deletion causes sensitivity to ACF due Top2 activity
Figure 1. (A) Architecture of Doc2Hpo. (B) Interactive user interface
Figure 1. MERMAID web server interface (Start page, Parameter page): MERMAID provides two ways to submit a protein ... Figure 1. MERMAID web server interface.
Figure 1. Yvis platform overview
Figure 1. The framework of NetGO with seven steps
Figure 1. Workflow of the HawkDock server that is divided into three major steps: (i) input of unbound or bound protein ... Figure 1. Workflow of the HawkDock.
Figure 1. Overview of features that can be assessed in a single RegulationSpotter VCF analysis run. Depending upon a ... Figure 1. Overview of features.
Figure 2. Result page of a Primer3Plus Cloning run showing the left and right primers in blue and yellow. The included ... Figure 2. Result page of a Primer3Plus.
Figure 1. Workflow of the analysis to estimate the number of true human miRNAs. Samples containing NGS data were ... Figure 1. Workflow of the analysis.
Figure 4. MTase JHP1050 inactivation causes phenotypic effects that vary between strains: growth, viability and ... Figure 4. MTase JHP1050 inactivation.
Figure 1. SQL schema used by RetroRules
Figure 1. Scheme of a phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP) for selection ... Figure 1. Scheme of a phosphorothioated-terminal.
Figure 1 Correlation between en face Oil-Red O staining and aortic root lesion size vs. plasma cholesterol and ... Figure 1 Correlation between en face.
Figure 1. Excess cost of methicillin-resistant Staphylococcus aureus (MRSA) compared with methicillin-susceptible S. ... Figure 1. Excess cost of methicillin-resistant.
Figure 1. 3C analysis of HEM3, BLM10, and SEN1 genes in rpb4Δ and isogenic wild type cells. (A) Schematic ... Figure 1. 3C analysis of HEM3, BLM10, and.
Figure 1. CSB does not affect the recruitment of OGG1 to oxidative DNA damage. (A) Representative stills of time-lapse ... Figure 1. CSB does not affect.
Figure 1. Prevalence of parasitic infection and anemia among the children. Unless provided in the caption above, the following copyright applies to the.
Figure 6. Protein-protein interactions
Figure 1. GWAS Catalog associations for coronary artery disease plotted across all chromosomes. Associations added ... Figure 1. GWAS Catalog associations.
Figure 1 The workflow of CAR development from a hybridoma
Figure 1 Mechanisms of mitral regurgitation.
Figure 1. Removal of the 2B subdomain activates Rep monomer unwinding
Figure 1. Unrooted phylogenetic trees for UL73 and UL74 based on amino acid sequences derived from 243 genome ... Figure 1. Unrooted phylogenetic trees.
Fig. 1. Examples of plots of NanoPlot and NanoComp
Fig. 1. A graphical representation of the GGDNA workflow used to identify each single expressed TE transcript from ... Fig. 1. A graphical representation.
Presentation transcript:

Figure 2. Snapshot of the CandidaOrfDB interface Figure 2. Snapshot of the CandidaOrfDB interface. An example of an ORF page is shown. In the ‘ORF details’ box, the ... Figure 2. Snapshot of the CandidaOrfDB interface. An example of an ORF page is shown. In the ‘ORF details’ box, the different ID names, the length and the chromosome location of the ORF of interest are displayed. The haplotype assigned to the cloned ORF is noted (A, B or A/B if there is no allelic differences or equal number of differences against both haplotypes). The coordinates of introns are indicated when present. The summary results of the sequence analysis against the reference sequence are presented. The ‘SNP(s)’ box shows a table that lists the sequence differences between the cloned ORF and the reference sequences (Haplotypes A and B from Assembly22, and Assembly21 sequences). The ‘Nucleotide and Protein sequences’ boxes display the sequences with a color code for synonymous and non-synonymous SNPs. All sequences can be downloaded. The ‘Resources’ box displays links towards information that is relevant to each resource, i.e. oligonucleotide sequences for the BP clones, barcode sequence for the overexpression plasmids and the C. albicans overexpression strains, position of the clone in the different plates of the collection, plasmid sequences. The ‘Restrictions on the cloned sequence’ box indicates the existence of restriction sites, as well as the size of the expected fragments for enzymes that are used in regards to subsequent applications of these donor plasmids. Unless provided in the caption above, the following copyright applies to the content of this slide: © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Nucleic Acids Res, Volume 46, Issue 14, 06 July 2018, Pages 6935–6949, https://doi.org/10.1093/nar/gky594 The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 1. Statistics on the Candida albicans ORFeome Figure 1. Statistics on the Candida albicans ORFeome. (A) Percentage of successfully cloned ORFs that are identical to ... Figure 1. Statistics on the Candida albicans ORFeome. (A) Percentage of successfully cloned ORFs that are identical to the reference sequence (No SNPs, no DIPs) or that contain SNPs and/or DIPs. Only SNPs that do not introduce a STOP codon and DIPs multiple of 3 bp have been accepted. (B) Haplotypes distribution. Each cloned ORF has been assigned to HapA or HapB when there are differences between the two alleles of the ORF, and HapA/B when the two alleles of the ORF are identical (as defined in Assembly22). (C) Success rate on each chromosome. The graphs represent the number of reference ORFs and the number of successfully cloned ORFs on each chromosome, as well as the overall percentage of success for each chromosome. (D) Percentage of success based on ORF size. Unless provided in the caption above, the following copyright applies to the content of this slide: © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Nucleic Acids Res, Volume 46, Issue 14, 06 July 2018, Pages 6935–6949, https://doi.org/10.1093/nar/gky594 The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 4. Ume6-driven filamentation validates the primary set of 15 destination vectors. Inducible (A) and constitutive ... Figure 4. Ume6-driven filamentation validates the primary set of 15 destination vectors. Inducible (A) and constitutive (B) overexpression of UME6 triggers filamentation. Isolates were grown in rich medium in presence or absence of ATc3 for 2–4 h at 30°c. Cells were observed with a Leica DM RXA microscope (Leica Microsystems) with an x40 oil-immersion objective. Unless provided in the caption above, the following copyright applies to the content of this slide: © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Nucleic Acids Res, Volume 46, Issue 14, 06 July 2018, Pages 6935–6949, https://doi.org/10.1093/nar/gky594 The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 3. Structure of the destination vectors for use with the Candida albicans ORFeome. Schematic view of the 49 ... Figure 3. Structure of the destination vectors for use with the Candida albicans ORFeome. Schematic view of the 49 destination vectors, each designated with a standardized nomenclature, pCA-DESTijkl, whereby i stands for the transformation marker (1, URA3; 2, NAT1); j stands for the promoter (1, P<sub>TET</sub>; 2, P<sub>PCK1</sub>; 3, P<sub>TDH3</sub>; 4, P<sub>ACT1</sub>); k stands for N-terminal tagging (0, no tag; 1, 3xHA; 2, GFP; 3, TAP); and l stands for C-terminal tagging (0, no tag; 1, 3xHA; 2, GFP; 3, TAP). The spacer sequence (SP), represented by the yellow box, is intended to facilitate subsequent Illumina-based barcode sequencing. The Gateway cassette (GTW), represented by the green box, requires working with ccdB resistant Escherichia coli strains. Integration of StuI-linearized plasmids (or at the nearby I-SceI site if the cloned ORF contains StuI sites) is targeted at the RPS1 locus. Unless provided in the caption above, the following copyright applies to the content of this slide: © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Nucleic Acids Res, Volume 46, Issue 14, 06 July 2018, Pages 6935–6949, https://doi.org/10.1093/nar/gky594 The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 5. Detection of 3xHA- or TAP-tagged Ume6 protein by western blot. Production of 3xHA-tagged (A) and TAP-tagged ... Figure 5. Detection of 3xHA- or TAP-tagged Ume6 protein by western blot. Production of 3xHA-tagged (A) and TAP-tagged (B) Ume6 proteins. Candida albicans strains harboring the P<sub>TET</sub> and P<sub>TDH3</sub> constructions were grown in YPD ± ATc3 for 2 and 4 h, respectively. Whole cell extracts were separated by SDS-PAGE and probed with a peroxidase-coupled antibody, allowing the detection of the 3xHA-tagged and TAP-tagged Ume6 protein. The tagged Ume6 proteins are indicated by an arrow along with their deduced sizes. M1: PageRuler Prestained Protein Ladder (Thermo Scientific) and M2: Precision Plus Protein™ Dual Color Standards (Bio-Rad). Unless provided in the caption above, the following copyright applies to the content of this slide: © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Nucleic Acids Res, Volume 46, Issue 14, 06 July 2018, Pages 6935–6949, https://doi.org/10.1093/nar/gky594 The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 6. Proof of principle of two-hybrid based PPI detection via mating in Candida albicans. (A) Schematic ... Figure 6. Proof of principle of two-hybrid based PPI detection via mating in Candida albicans. (A) Schematic representation of the concept. Diploid opaque MTLa bait-expressing cells were mixed with opaque MTLα prey-expressing cells to obtain tetraploids, as selected on leucine and arginine-free medium. Detection of protein-protein interaction was observed on medium lacking histidine as an indicator of expression of the two-hybrid readout marker. (B) Proof of principle using Hst7 as a bait and Cek1 as a prey, previously shown to interact (31). Cells of each type were spotted in a dilution series and growth was monitored on SC-leu-arg, which allowed growth of the tetraploid and diploid offspring and on SC-met-his, which allowed detection of PPI, only in those cells that are expressing both bait and prey proteins. As negative controls, tetraploids derived from the crossing of bait-expressing strains with empty prey vector transformed strains, and from the crossing of prey-expressing strains with strains expressing the empty bait vector grew on SC-leu-arg but not on SC-met-his. Unless provided in the caption above, the following copyright applies to the content of this slide: © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Nucleic Acids Res, Volume 46, Issue 14, 06 July 2018, Pages 6935–6949, https://doi.org/10.1093/nar/gky594 The content of this slide may be subject to copyright: please see the slide notes for details.