Ch. 14 - Gases III. Ideal Gas Law.

Slides:



Advertisements
Similar presentations
Gases, continued…. V n Avogadros Principle b Equal volumes of gases contain equal numbers of moles at the same temp & pressure true for any gas.
Advertisements

Ideal Gas Law & Dalton’s Law
Ch Gases III. Three More Laws Ideal Gas Law, Daltons Law, & Grahams Law.
Ch – Ideal Gases -Avogadro’s Law (extension) -STP & molar volume of gas (review) -Ideal Gas Law (most important)
CHEMISTRY Wednesday/Thursday April 25 th -26 th, 2012.
Three More Laws. A. Ideal Gas Law The 4 th variable that considers the amount of gas in the system is P 1 V 1 T 1 n = P 2 V 2 T 2 n Equal volumes of gases.
III. Ideal Gas Law (p , ) Ch. 10 & 11 - Gases.
III. Ideal Gas Law Gases Gases. V n A. Avogadro’s Principle b Equal volumes of gases contain equal numbers of moles at constant temp & pressure true for.
Topic 10 Gases III. Ideal Gas Law.
III. Ideal Gas Law Gases. PV T VnVn PV nT A. Ideal Gas Law = k UNIVERSAL GAS CONSTANT R= L  atm/mol  K R=8.315 dm 3  kPa/mol  K = R You don’t.
Ideal Gas Law & Gas Stoichiometry. Avogadro’s Principle Equal volumes of gases contain equal numbers of moles at constant temp & pressure true for any.
Ideal Gas Law (Equation):
Learning Log b Why are you advised to open windows slightly if a tornado approaches?
I. The Gas Laws Ch Gases. A. Boyle’s Law b The pressure and volume of a gas are inversely related at constant mass & temp P V P 1 V 1 = P 2 V 2.
Section 13.2 Using Gas Laws to Solve Problems. Section 13.2 Using Gas Laws to Solve Problems 1.To understand the ideal gas law and use it in calculations.
III. Ideal Gas Law (p , ) Ch. 10 & 11 - Gases.
C. Johannesson III. Ideal Gas Law (p , ) Ch. 10 & 11 - Gases.
Ideal Gas Law & Gas Mixtures. Ideal Gas Law Ideal Gas Law: PV = nRT Where n = the number of moles R is the Ideal Gas Constant The ideal gas law can be.
III. Ideal Gas Law and Dalton’s Law of Partial Pressure Gases.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
Using The Ideal Gas Law Gas Stoichiometry. PV T VnVn PV nT Ideal Gas Law = k UNIVERSAL GAS CONSTANT R= L  atm/mol  K R=8.31 L  kPa/mol  K =
Ch. 10 & 11 - Gases Ideal Gas Law C. Johannesson.
Charles’ Law V 1 = V 2 T 1 T 2 Volume is directly proportional to temp (Pressure constant) Boyle’s Law P 1 V 1 = P 2 V 2 Pressure is inversely proportional.
II. Ideal Gas Law Ch Gases. A. Ideal Gas Law P 1 V 1 P 2 V 2 T 1 n 1 T 2 n 2 = This is where we ended with the Combined Gas Law: Play video!
The Gas Laws Ch. 14- Gases. Boyle’s Law P V PV = k Pressure and Volume are inversely proportional. As Volume increased, pressure decreases.
Chapter 10: Gases STP *standard temp and pressure temp= K, 0ºC pressure= 101.3kPa, 1atm, 760mmHg, 760torr Problems Convert: a) 0.357atm  torr b)
Ideal Gas Law & Gas Stoichiometry. Avogadro’s Principle Equal volumes of gases contain equal numbers of moles at constant temp & pressure true for any.
Ideal Gas Law Ch. 10 & 11 - Gases. V n A. Avogadro’s Principle b Equal volumes of gases contain equal numbers of moles at constant temp & pressure true.
A helium-filled balloon at sea level has a volume of 2.10 L at atm and 36 C. If it is released and rises to an elevation at which the pressure is.
The Ideal Gas Law Ideal Gas  Follows all gas laws under all conditions of temperature and pressure.  Follows all conditions of the Kinetic Molecular.
Chapter 14 The Behavior of Gases. Section 14.4 Gases: Mixtures & Movement l\
Gases. Units of Pressure 1atm. = 760mm Hg (torr) = 101,325 pascals (Pa) = kPa = psi.
Gases I. Physical Properties.
A. Kinetic Molecular Theory
III. Ideal Gas Law.
Density, Dalton Avogadro & Graham
To understand the Ideal Gas Law and use it in calculations
Gases.
Gas laws.
Ideal Gas Law (p ) please read the text first
III. Ideal Gas Law (p , in class)
Bell Ringer (on Tuesday) A molecule of oxygen gas has an average speed of 12.3 m/s at a given temp and pressure. What is the average speed of hydrogen.
Ideal Gas Law Thursday, April 5th, 2018.
DO NOW: Complete on the BACK of the NOTES!
What are the standard conditions (STP) for temperature and pressure?
Gases I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as.
Ch Gases I. Physical Properties.
Ch. 10 & 11 - Gases III. Ideal Gas Law (p , )
Properties and Measuring Variables
Ideal Gas Law (Equation):
Ideal Gas Law.
Ch Gases I. Physical Properties.
Ch Gases I. Physical Properties.
Topic 10 Gases III. Ideal Gas Law.
Ch. 13 Gases III. Ideal Gas Law (p ).
Ch. 10 & 11 - Gases III. Ideal Gas Law (p , )
DO NOW Pick up notes. Get out Boyle’s, Charles’, and Gay- Lussac’s handout. Turn in Gas Pressure lab – each person turns in his/her own. Big Chill Project.
Objectives To understand the ideal gas law and use it in calculations
Gas Laws Robert Boyle Jacques Charles Amadeo Avogadro
“The Behavior of Gases”
III. Ideal Gas Law (p , in class)
Gas Laws Chapter 14.
III. Ideal Gas Law (p , in class)
PV = nRT Pressure x Volume = Moles x gas constant x Temp.
Gases, cont. (and finished!)
Ideal Gas Law.
Boyle’s Gas Law ** At constant temperature and
Ch. 10 & 11 - Gases III. Ideal Gas Law (p , )
BELLWORK.
Presentation transcript:

Ch. 14 - Gases III. Ideal Gas Law

A. Avogadro’s Principle Equal volumes of gases contain equal numbers of moles at constant temp & pressure true for any gas V n

UNIVERSAL GAS CONSTANT A. Ideal Gas Law Merge the Combined Gas Law with Avogadro’s Principle: PV nT PV T V n = k = R UNIVERSAL GAS CONSTANT R=0.0821 Latm/molK R=8.315 dm3kPa/molK You don’t need to memorize these values!

UNIVERSAL GAS CONSTANT A. Ideal Gas Law PV=nRT UNIVERSAL GAS CONSTANT R=0.0821 Latm/molK R=8.315 dm3kPa/molK You don’t need to memorize these values!

C. Ideal Gas Law Problems Calculate the pressure in atmospheres of 0.412 mol of He at 16°C & occupying 3.25 L. GIVEN: P = ? atm n = 0.412 mol T = 16°C = 289 K V = 3.25 L R = 0.0821Latm/molK WORK: PV = nRT P(3.25)=(0.412)(0.0821)(289) L mol Latm/molK K P = 3.01 atm

C. Ideal Gas Law Problems Find the volume of 85 g of O2 at 25°C and 104.5 kPa. GIVEN: V = ? n = 85 g T = 25°C = 298 K P = 104.5 kPa R = 8.315 dm3kPa/molK WORK: 85 g 1 mol = 2.7 mol 32.00 g = 2.7 mol PV = nRT (104.5)V=(2.7) (8.315) (298) kPa mol dm3kPa/molK K V = 64 dm3

D. Dalton’s Law of Partial Pressures For a mixture of gases in a container, PTotal = P1 + P2 + P3 + . . . P1 represents the “partial pressure” or the contribution by that gas. Dalton’s Law is particularly useful in calculating the pressure of gases collected over water.

If the first three containers are all put into the fourth, we can find the pressure in that container by adding up the pressure in the first 3: 2 atm + 1 atm + 3 atm = 6 atm 1 2 3 4