Linear Programming, A Geometric Approach

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

1 A B C
Scenario: EOT/EOT-R/COT Resident admitted March 10th Admitted for PT and OT following knee replacement for patient with CHF, COPD, shortness of breath.
Angstrom Care 培苗社 Quadratic Equation II
AP STUDY SESSION 2.
1
& dding ubtracting ractions.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
David Burdett May 11, 2004 Package Binding for WS CDL.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Add Governors Discretionary (1G) Grants Chapter 6.
CALENDAR.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt FactorsFactors.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
The 5S numbers game..
Break Time Remaining 10:00.
Factoring Quadratics — ax² + bx + c Topic
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
An Application of Linear Programming Lesson 12 The Transportation Model.
Outline Minimum Spanning Tree Maximal Flow Algorithm LP formulation 1.
1. The Problem 2. Tabulate Data 3. Translate the Constraints 4. The Objective Function 5. Linear Programming Problem 6. Production Schedule 7. No Waste.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1 Section 5.5 Dividing Polynomials Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
8.6 Linear Programming. Linear Program: a mathematical model representing restrictions on resources using linear inequalities combined with a function.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
Chapter 1: Expressions, Equations, & Inequalities
1..
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Artificial Intelligence
When you see… Find the zeros You think….
Before Between After.
Slide R - 1 Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Prentice Hall Active Learning Lecture Slides For use with Classroom Response.
Subtraction: Adding UP
: 3 00.
5 minutes.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
1 Let’s Recapitulate. 2 Regular Languages DFAs NFAs Regular Expressions Regular Grammars.
Speak Up for Safety Dr. Susan Strauss Harassment & Bullying Consultant November 9, 2012.
Essential Cell Biology
Converting a Fraction to %
Exponents and Radicals
Clock will move after 1 minute
PSSA Preparation.
& dding ubtracting ractions.
Lial/Hungerford/Holcomb/Mullins: Mathematics with Applications 11e Finite Mathematics with Applications 11e Copyright ©2015 Pearson Education, Inc. All.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Lial/Hungerford/Holcomb/Mullins: Mathematics with Applications 11e Finite Mathematics with Applications 11e Copyright ©2015 Pearson Education, Inc. All.
Select a time to count down from the clock above
9. Two Functions of Two Random Variables
1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
1. Vertex 2. Fundamental Theorem of Linear Programming 3. Linear Programming Steps 1.
Finite Mathematics & Its Applications, 10/e by Goldstein/Schneider/SiegelCopyright © 2010 Pearson Education, Inc. 1 of 54 Chapter 3 Linear Programming,
1. Number of Variables 2. Transportation Example 1.
Presentation transcript:

Linear Programming, A Geometric Approach Chapter 3 Linear Programming, A Geometric Approach Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Outline 3.1 A Linear Programming Problem 3.2 Linear Programming I 3.3 Linear Programming II Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

3.1 A Linear Programming Problem The Problem Tabulate Data Translate the Constraints The Objective Function Linear Programming Problem Production Schedule No Waste Feasible Set Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

The Problem A furniture manufacturer makes two types of furniture - chairs and sofas. The manufacture of a chair requires 6 hours of carpentry, 1 hour of finishing, and 2 hours of upholstery. Manufacture of a sofa requires 3 hours of carpentry, 1 hour of finishing, and 6 hours of upholstery. Each day the factory has available 96 labor hours for carpentry, 18 labor-hours for finishing, and 72 labor-hours for upholstery. The profit per chair is $80 and per sofa is $70. How many chairs and sofas should be produced each day to maximize the profit? Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Tabulate Data It is helpful to tabulate data given in the problem. Chair Sofa Available time Carpentry Finishing Upholstery Profit 6 hours 3 hours 96 labor-hours 1 hour 18 labor-hours 2 hours 72 labor-hours $80 $70 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Translate the Constraints Translate each of the constraints (restrictions on labor-hours available) into mathematical language. Let x be the number of chairs and y be the number of sofas manufactured each day, respectively. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Translate the Constraints (2) Carpentry: [number of labor-hours per day] = (number of hours required per chair)  (number of chairs per day) + (number of hours required per sofa)  (number of sofas per day) = 6x + 3y [number of labor-hours per day] < [maximum available] 6x + 3y < 96 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Translate the Constraints (3) Similarly, Finishing: x + y < 18 Upholstery: 2x + 6y < 72 Number of chairs and sofas cannot be negative: x > 0, y > 0 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

The Objective Function The objective of the problem is to optimize profit. Translate the profit (objective function) into mathematical language. [profit] = [profit from chairs] + [profit from sofas] = [profit per chair][number of chairs] + [profit per sofa][number of sofas] = 80x + 70y Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Linear Programming Problem The manufacturing problem can now be written as a mathematical problem. Find x and y for which 80x + 70y is as large as possible, and for which the following hold simultaneously: This is called a linear programming problem. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Production Schedule In the manufacturing problem, each pair of numbers (x,y) that satisfies the system of inequalities is called a production schedule. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Production Schedule Which of the following is a production schedule for (11,6)? (6,11)? Yes No Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

No Waste It seems clear that a factory will operate most efficiently when its labor is fully utilized (no waste). This would require x and y to satisfy the system Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example No Waste Solve According to the graph of the three equations, there is no common intersection and therefore no solution. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Feasible Set The set of solutions to the system of inequalities is called the feasible set of the system. This represents all possible production schedules. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Feasible Set Find the feasible set for Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Feasible Set (2) Notice that (0,0) satisfies all the inequalities. Graph the boundaries: y < -2x + 32 y < -x + 18 y < -x/3 + 12 x > 0, y > 0 Feasible Set Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Summary Section 3.1 A linear programming problem asks us to find the point (or points) in the feasible set of a system of linear inequalities at which the value of a linear expression involving the variables, called the objective function, is either maximized or minimized. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

3.2 Linear Programming I Vertex Fundamental Theorem of Linear Programming Linear Programming Steps Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Vertex The boundary of the feasible set is composed of line segments. The line segments intersect in points, each of which is a corner of the feasible set. Such a corner is called a vertex. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Vertex Find the vertices of (0,12) (9,9) (14,4) (0,0) (16,0) y < -2x + 32 y < -x + 18 y < -x/3 + 12 x > 0, y > 0. (0,12) (9,9) (14,4) (0,0) (16,0) Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Fundamental Theorem of Linear Programming Fundamental Theorem of Linear Programming The maximum (or minimum) value of the objective function in a linear programming problem is achieved at one of the vertices of the feasible set. The point that yields the maximum (or minimum) value of the objective function is called an optimal point. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Optimal Point Profit = 80x + 70y Find the point which maximizes Profit = 80x + 70y for the feasible set with vertices (0,0), (0,12), (9,9), (14,4) and (16,0). Vertex Profit = 80x + 70y (0,0) 80(0) + 70(0) = 0 (0,12) 80(0) + 70(12) = 840 (9,9) 80(9) + 70(9) = 1350 (14,4) 80(14) + 70(4) = 1400 (16,0) 80(16) + 70(0) = 1280 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Linear Programming Steps - Step 1 Translate the problem into mathematical language. Organize the data. Identify the unknown quantities and define corresponding variables. Translate the restrictions into linear inequalities. Form the objective function. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Linear Programming Steps - Step 2 Graph the feasible set. Put the inequalities in standard form. Graph the straight line corresponding to each inequality. Determine the side of the line belonging to the graph of each inequality. Cross out the other side. The remaining region is the feasible set. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Linear Programming Steps - Steps 3 & 4 Determine the vertices of the feasible set. Step 4 Evaluate the objective function at each vertex. Determine the optimal point. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Linear Programming Steps Rice and soybeans are to be part of a staple diet. One cup of uncooked rice costs 21 cents and contains 15 g of protein, 810 calories, and 1/9 mg of B2 (riboflavin). One cup of uncooked soybeans costs 14 cents and contains 22.5 g of protein, 270 calories, and 1/3 mg of B2. The minimum daily requirements are 90 g of protein, 1620 calories and 1 mg of B2. Find the optimal point that will minimize cost. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Step 1A Organize the data. Rice Soybeans Required level per day Protein (g/cup) 15 22.5 90 Calories (per cup) 810 270 1620 B2 (mg/cup) 1/9 1/3 1 Cost (cents/cup) 21 14 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Step 1B B. Identify the unknown quantities and define corresponding variables. x = number of cups of rice per day y = number of cups of soybeans per day Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Step 1C C. Translate the restrictions into linear inequalities. Protein: 15x + 22.5y > 90 Calories: 810x + 270y > 1620 B2: (1/9)x + (1/3)y > 1 Nonnegative: x > 0, y > 0 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Step 1D D. Form the objective function. Minimize the cost in cents: [Cost] = 21x + 14y Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Step 2A A. Put the inequalities in standard form. Protein: y > (-2/3)x + 4 Calories: y > -3x + 6 B2: y > (-1/3)x + 3 Nonnegative: x > 0 y > 0 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Step 2B 4 B. Graph the straight line corresponding to each inequality. 1. y = (-2/3)x + 4 2. y = -3x + 6 3. y = (-1/3)x + 3 4. x = 0 5. y = 0 2 1 3 5 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Step 2C C. Determine the side of the line. y > (-2/3)x + 4 feasible set Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Step 3 Determine the vertices of the feasible set. x = 0 & y = -3x + 6: (0,6) y = -3x + 6 & y = (-2/3)x + 4: (6/7,24/7) y = (-2/3)x + 4 & y = (-1/3)x + 3: (3,2) y = (-1/3)x + 3 & y = 0: (9,0) (0,6) (6/7,24/7) (3,2) (9,0) Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Step 4 Determine the objective function at each vertex. Determine the optimal point. Vertex Cost = 21x + 14y (0,6) 21(0) + 14(6) = 84 (6/7,24/7) 21(6/7) + 14(24/7) = 66 (3,2) 21(3) + 14(2) = 91 (9,0) 21(9) + 14(0) = 189 The minimum cost is 66 cents for 6/7 cups of rice and 24/7 cups of soybeans. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Summary Section 3.2 - Part 1 The fundamental theorem of linear programming states that the optimal value of the objective function for a linear programming problem occurs at a vertex of the feasible set. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Summary Section 3.2 - Part 2 To solve a linear programming word problem, assign variables to the unknown quantities, translate the restrictions into a system of linear inequalities involving no more than two variables, form a function for the quantity to be optimized, graph the feasible set, evaluate the objective function at each vertex, and identify the vertex that gives the optimal value. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

3.3 Linear Programming II Number of Variables Transportation Example Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Number of Variables On the surface some problems may appear to have more than two variables. However, sometimes they can be translated into mathematical language so that only two variables are required. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Example Transportation A TV dealer has stores in city A and B and warehouses in cities W and V. The cost of shipping a TV from W to A is $6, from V to A is $3, from W to B is $9 and from V to B is $5. Store in A orders 25 TV sets and store in B orders 30 sets. The W warehouse has a stock of 45 sets and V warehouse has 40. What is the most economical way to supply the two stores the requested TV sets? Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Step 1A V Stock: 40 B A $9 $5 Needs: 30 Needs: 25 W Stock: 45 $6 $3 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Step 1B The number of variables can be reduced by observing that what is not shipped from the warehouse in W must be shipped from the warehouse in V. Let x be the number of TVs shipped from the W warehouse to the store in A and y be the number of TVs shipped from W to B. Then 30 - x is going from V to A and 25 - y from V to B. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Step 1A&B V Stock: 40 30 - x 25 - y B A $9 $5 Needs: 30 Needs: 25 W $6 $3 x y Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Step 1C Warehouse W: x + y < 45 Warehouse V: Nonnegative restrictions: 0 < x and 30 - x > 0 0 < y and 25 - y > 0 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Step 1C - Simplified x + y < 45 x + y > 15 x < 30 y < 25 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

[cost] = 3x + 6y + 5(30 - x) + 9(25 - y) Step 1D The cost of transporting the TVs is to be minimized. [cost] = 3x + 6y + 5(30 - x) + 9(25 - y) [cost] = 375 - 2x - 3y Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Step 2 1. y < 45 - x 2. y > 15 - x 3. x < 30, 0 < x 4. y < 25, 0 < y 4 3 1 2 3 4 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Step 3 y < 45 - x y > 15 - x x < 30 0 < x y < 25 (0,25) (20,25) (0,15) (30,15) (15,0) (30,0) Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Step 4 Vertex Cost = 375 - 2x - 3y (0,15) 375 - 2(0) - 3(15) = 330 (0,25) 375 - 2(0) - 3(25) = 300 (20,25) 375 - 2(20) - 3(25) = 260 (30,15) 375 - 2(30) - 3(15) = 270 (30,0) 375 - 2(30) - 3(0) = 315 (15,0) 375 - 2(15) - 3(0) = 345 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Step 4 - Solution Optimum Point (20,25) V Stock: 40 10 B A $9 $5 Needs: 30 Needs: 25 W Stock: 45 10 $5 $9 $3 $6 20 25 Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e

Summary Section 3.3 Sometimes it is necessary to use algebra to reduce the number of variables. Once the number of variables is reduced to two, the steps for solving a linear programming problem are followed. Goldstein/Schnieder/Lay: Finite Math & Its Applications, 9e