Volume 85, Issue 3, Pages (February 2015)

Slides:



Advertisements
Similar presentations
Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons
Advertisements

Calcium Dynamics of Spines Depend on Their Dendritic Location
Jason R. Chalifoux, Adam G. Carter  Neuron 
Polarity of Long-Term Synaptic Gain Change Is Related to Postsynaptic Spike Firing at a Cerebellar Inhibitory Synapse  Carlos D Aizenman, Paul B Manis,
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Control of Inhibitory Synaptic Outputs by Low Excitability of Axon Terminals Revealed by Direct Recording  Shin-ya Kawaguchi, Takeshi Sakaba  Neuron 
Volume 84, Issue 4, Pages (November 2014)
Attenuation of Synaptic Potentials in Dendritic Spines
Single-Photon Absorptions Evoke Synaptic Depression in the Retina to Extend the Operational Range of Rod Vision  Felice A. Dunn, Fred Rieke  Neuron  Volume.
Michael B. Hoppa, Geraldine Gouzer, Moritz Armbruster, Timothy A. Ryan 
First Node of Ranvier Facilitates High-Frequency Burst Encoding
Volume 75, Issue 6, Pages (September 2012)
Aleksander Sobczyk, Karel Svoboda  Neuron 
Dendritic Integration in Hippocampal Dentate Granule Cells
Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release  Martin Müller, Graeme W. Davis  Current.
Kristian Wadel, Erwin Neher, Takeshi Sakaba  Neuron 
Pair Recordings Reveal All-Silent Synaptic Connections and the Postsynaptic Expression of Long-Term Potentiation  Johanna M Montgomery, Paul Pavlidis,
Dendritic Spines Prevent Synaptic Voltage Clamp
M1 Muscarinic Receptors Boost Synaptic Potentials and Calcium Influx in Dendritic Spines by Inhibiting Postsynaptic SK Channels  Andrew J. Giessel, Bernardo.
David C. Immke, Edwin W. McCleskey  Neuron 
Dopaminergic Modulation of Axon Initial Segment Calcium Channels Regulates Action Potential Initiation  Kevin J. Bender, Christopher P. Ford, Laurence.
Spontaneous Activity Drives Local Synaptic Plasticity In Vivo
Adaptation of Ca2+-Triggered Exocytosis in Presynaptic Terminals
Rebecca S. Jones, Reed C. Carroll, Scott Nawy  Neuron 
Variable Dendritic Integration in Hippocampal CA3 Pyramidal Neurons
Volume 45, Issue 1, Pages (January 2005)
Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System  Yangling Mu, Mu-ming Poo  Neuron 
SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells  Gen Ohtsuki, Claire Piochon, John P. Adelman,
Volume 68, Issue 5, Pages (December 2010)
Glutamate-Mediated Extrasynaptic Inhibition
Volume 34, Issue 1, Pages (March 2002)
Functional Distinctions between Spine and Dendritic Synapses Made onto Parvalbumin- Positive Interneurons in Mouse Cortex  Laura Sancho, Brenda L. Bloodgood 
Zhiru Wang, Ning-long Xu, Chien-ping Wu, Shumin Duan, Mu-ming Poo 
Christine Grienberger, Xiaowei Chen, Arthur Konnerth  Neuron 
Tiago Branco, Michael Häusser  Neuron 
Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors  Shannon J. Moore, Donald C. Cooper,
The Life Cycle of Ca2+ Ions in Dendritic Spines
Dario Brambilla, David Chapman, Robert Greene  Neuron 
A Novel Form of Local Plasticity in Tuft Dendrites of Neocortical Somatosensory Layer 5 Pyramidal Neurons  Maya Sandler, Yoav Shulman, Jackie Schiller 
Volume 52, Issue 4, Pages (November 2006)
Volume 78, Issue 6, Pages (June 2013)
Koen Vervaeke, Hua Hu, Lyle J. Graham, Johan F. Storm  Neuron 
Volume 97, Issue 6, Pages e3 (March 2018)
Volume 74, Issue 3, Pages (May 2012)
Tiago Branco, Kevin Staras, Kevin J. Darcy, Yukiko Goda  Neuron 
Volume 125, Issue 4, Pages (May 2006)
Attila Losonczy, Jeffrey C. Magee  Neuron 
Gabe J. Murphy, Fred Rieke  Neuron 
Michael J. Higley, Bernardo L. Sabatini  Neuron 
Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release  Martin Müller, Graeme W. Davis  Current.
Stephanie Rudolph, Linda Overstreet-Wadiche, Jacques I. Wadiche  Neuron 
Deconvolution of Voltage Sensor Time Series and Electro-diffusion Modeling Reveal the Role of Spine Geometry in Controlling Synaptic Strength  Jerome.
Wei R. Chen, Wenhui Xiong, Gordon M. Shepherd  Neuron 
Volume 57, Issue 3, Pages (February 2008)
Volume 1, Issue 5, Pages (May 2012)
Attila Losonczy, Jeffrey C. Magee  Neuron 
Volume 64, Issue 3, Pages (November 2009)
Xiaowei Chen, Nathalie L. Rochefort, Bert Sakmann, Arthur Konnerth 
The Back and Forth of Dendritic Plasticity
Volume 46, Issue 1, Pages (April 2005)
Hiroto Takahashi, Jeffrey C. Magee  Neuron 
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons  Nace L Golding, Nelson Spruston  Neuron 
Extracellular Glutamate in the Nucleus Accumbens Is Nanomolar in Both Synaptic and Non-synaptic Compartments  Delia N. Chiu, Craig E. Jahr  Cell Reports 
Volume 57, Issue 3, Pages (February 2008)
Volume 57, Issue 6, Pages (March 2008)
Desdemona Fricker, Richard Miles  Neuron 
Nonlinear Regulation of Unitary Synaptic Signals by CaV2
Adam G. Carter, Bernardo L. Sabatini  Neuron 
Volume 54, Issue 1, Pages (April 2007)
Presentation transcript:

Volume 85, Issue 3, Pages 590-601 (February 2015) Local Postsynaptic Voltage-Gated Sodium Channel Activation in Dendritic Spines of Olfactory Bulb Granule Cells  Wolfgang G. Bywalez, Dinu Patirniche, Vanessa Rupprecht, Martin Stemmler, Andreas V.M. Herz, Dénes Pálfi, Balázs Rózsa, Veronica Egger  Neuron  Volume 85, Issue 3, Pages 590-601 (February 2015) DOI: 10.1016/j.neuron.2014.12.051 Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 1 TPU-Evoked Ca2+ Spine Signals and Somatic EPSPs Are Equivalent to Synaptically Evoked Signals (A) Left: spine and dendrite filled with 100 μM OGB-1 with scan line and TPU site. Right: line scan during uncaging. Scale bars: 1 μm, 500 ms. (B) Left: the individual response from (A), voltage recording at soma (top), Ca2+ transient in spine (red) and dendrite (gray) (bottom). Right: averaged response (n = 20). Scale bars: 25%, 200 ms, 2 mV. (C) Distribution of ΔF/F amplitudes for TPU-evoked and synaptic data (latter from Egger et al., 2005). (D) Left: response amplitudes over time in the above experiment; arrow: individual response from (B). Right: spine-wise comparison of averaged normalized (ΔF/F)TPU amplitudes separated by intervals of 10–25 min (n = 12, bold: average change ± SD to 1.00 ± 0.07 of control). (E) Relation of (ΔF/F)TPU to uEPSP amplitude (n = 65). (F) Left: individual (ΔF/F)TPU along with later spontaneous response. Scale bars are as in (B). Right: spine-wise comparison of averaged normalized spontaneous and TPU-evoked amplitudes (n = 8, bold: average spontaneous amplitude ± SD 1.09 ± 0.15 of TPU). See also Figure S1. Neuron 2015 85, 590-601DOI: (10.1016/j.neuron.2014.12.051) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 2 Sodium Channels Boost Postsynaptic Spine Ca2+ Signals and Accelerate the Rising Phase of the EPSP in Most Spines (A) Spine with scan line and TPU site. Scale bar: 2 μm. (B) Averaged uEPSP recorded at the soma during control and in the presence of TTX. Scale bars: 0.5 mV, 10 ms. (C) Averaged (ΔF/F)TPU in spine and dendrite from (A), (B) during control (top), and in the presence of TTX (bottom). Scale bars: 25%, 500 ms. (D) Effect of TTX on (ΔF/F)TPU amplitudes (n = 34 spines). Left: averaged absolute amplitudes ± SD (54% ± 33% versus 33% ± 22%, p < 0.0001). Right: spine-wise amplitudes normalized to control (bold: average change ± SD to 0.63 ± 0.20 of control). (E) Effect of TTX on (ΔF/F)TPU amplitudes at near physiological temperature (n = 5 spines). Spine-wise amplitudes normalized to control (bold: average change ± SD to 0.51 ± 0.18 of control). (F–K) Top: spine-wise parameters normalized to control (bold: average change). Bottom: individual data points for (ΔF/F)TPU amplitude in TTX normalized to their control values versus the change in the respective parameter. Solid line: linear fit to data. (F) Spine-wise analysis of uEPSP amplitudes: average ± SD 0.88 ± 0.30 of control, n = 23, p2 < 0.05. (G) No correlation between TTX effects on (ΔF/F)TPU and uEPSP amplitude. (H) Spine-wise analysis of uEPSP rise time change: average ± SD 1.24 ± 0.37 of control, n = 18, p2 < 0.02. (I) Strong correlation between TTX effects on (ΔF/F)TPU amplitude and uEPSP rise time (p2 < 0.001). (J) Spine-wise analysis of uEPSP duration change: average ± SD 1.78 ± 0.98 of control, n = 12, p2 < 0.05. (K) Strong correlation between TTX effects on (ΔF/F)TPU amplitude and uEPSP duration (p2 < 0.005). See also Figure S2. Neuron 2015 85, 590-601DOI: (10.1016/j.neuron.2014.12.051) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 3 High-Voltage-Activated Ca2+ Channels Mediate Most of the Extra Ca2+ Entry Caused by Nav Activation (A) Spine with scan line and TPU site. Scale bar: 2 μm. (B) Averaged uEPSP recorded at the soma of cell in (A) during control and in the presence of 1 μM ω-conotoxin MVIIC (CTX). Scale bars: 0.5 mV, 10 ms. (C) Averaged (ΔF/F)TPU in spine and dendrite from (A) during control (top) and in the presence of CTX (bottom). Scale bars: 25%, 500 ms. (D) Effect of CTX on (ΔF/F)TPU amplitudes (n = 24 spines). Left: averaged absolute amplitudes ± SD (42% ± 17% versus 28% ± 13%, p < 0.001). Right: spine-wise amplitudes normalized to control (bold: average change ± SD to 0.67 ± 0.19). (E) Spine-wise effect of CTX on normalized uEPSP amplitudes (left, n = 20, bold: average change ± SD 1.10 ± 0.42, n.s.) and rise times (right, n = 19, average ± SD 1.08 ± 0.35, n.s.). (F) Left: TTX before CTX (n = 14). Average effect of CTX on individual amplitudes normalized to control (bold: average change ± SD to 0.88 ± 0.22 of control). Right: CTX before TTX (n = 8). Average effect of TTX on individual amplitudes normalized to control (bold: average change ± SD to 0.94 ± 0.26 of control). Neuron 2015 85, 590-601DOI: (10.1016/j.neuron.2014.12.051) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 4 NMDA Receptors and Other Sources of Ca2+ Aside from HVACCs Are Not Required for Boosting of Ca2+; Big Conductance Ca2+-Activated-Type and A-Type K+ Currents Do Not Contribute to Repolarization (A) Top: averaged uEPSP recorded at the soma in the presence of 500 nM TTX and upon addition of 25 μM D-APV. Scale bars 1 mV, 10 ms. Gray trace: EPSP in APV scaled to the same amplitude as in TTX alone. Note the similar rise time in APV. Bottom: averaged (ΔF/F)TPU in the corresponding spine in the presence of 500 nM TTX and upon addition of 25 μM D-APV. Scale bars: 25%, 500 ms. (B) Left: spine-wise effect of 25 μM D-APV on normalized (ΔF/F)TPU amplitudes in the presence of 500 nM TTX + 1 μM CTX (left, n = 9, bold: average change 0.20 ± 0.09, P2 < 0.01). Right: the reverse experiment: Spine-wise effect of 500 nM TTX on normalized (ΔF/F)TPU amplitudes in the presence of 25 μM D-APV (n = 5, average ± SD 0.65 ± 0.16, p1 < 0.05). (C) Spine-wise effect of TTX on (ΔF/F)TPU amplitudes in the presence of 10 μM thapsigargin (left; n = 6, bold: average change ± SD 0.61 ± 0.22, p1 < 0.05) and 10 μM mibefradil (right; n = 6; bold: average change ± SD 0.73 ± 0.17, p1 < 0.025). (D) Cumulative display of the effect of various compounds on (ΔF/F)TPU amplitude normalized to control, i.e., to (ΔF/F)TPU amplitude in the absence of any compound. For TTX and CTX, compare Figures 2D and 3D. Other average values ± SD: APV 0.33 ± 0.19, n = 7, APV and TTX (and CTX for 9 spines) 0.18 ± 0.13, n = 15, mibefradil 0.90 ± 0.11, n = 5, thapsigargin 0.81 ± 0.17, n = 6. (E) The BK channel blocker iberiotoxin (100 nM) does not affect (ΔF/F)TPU amplitude (n = 6, bold: average change ± SD 0.90 ± 0.10, n.s.). (F) Left: effect of 5 mM 4-AP on (ΔF/F)TPU amplitude (n = 12, bold: average change ± SD 1.07 ± 0.17, n.s.). Right: effect of 5 mM 4-AP on uEPSP duration (n = 6, bold: average change 1.00 ± 0.05, n.s.). Neuron 2015 85, 590-601DOI: (10.1016/j.neuron.2014.12.051) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 5 Simulation of Spine Head Depolarization and Ca2+ Transient (A) Schematic representation. The granule cell model features a soma and a dendrite of length 200 μm, along which 50 spines are spaced equally. The spine at a distance of 80 μm receives a pulse of 1 mM glutamate for 1 ms, which causes electrical and diffusive currents. The electrical and diffusive couplings between the spine head and the dendrite are represented by two independent parameters, the spine neck resistance Rneck and the area ratio α (see Supplemental Experimental Procedures). Three types of molecules diffuse both longitudinally and radially within the spine head and the main dendrite: free Ca2+, the fluorescent dye OGB-1, and the bound CaOGB; the binding and unbinding of Ca2+ is simulated within each compartment. (B) Simulated membrane potential Vm(t) in the spine head in control conditions and with Nav blockade (“TTX”). Scale bars: 20 mV, 10 ms. (C) Simulated Vm(t) at the soma, as above. Scale bars: 0.5 mV, 10 ms. (D) Simulated CaOGB transient in the spine head and the corresponding dendritic segment in control conditions and “in TTX.” Scale bars: 10%, 500 ms. (E) Nav, AMPAR, and KDR current contributions to the postsynaptic event. Left: control conditions. Right: the same experiment with Nav blocked. Scale bars: 20 pA, 5 ms. (F) NMDAR and HVACC current contributions to the postsynaptic event. Left: control conditions. Right: the same experiment with Nav blocked. Scale bars: 0.5 pA, 5 ms. See also Figure S3; the parameter set of the simulations shown in (B)–(F) is listed in Table S4. Neuron 2015 85, 590-601DOI: (10.1016/j.neuron.2014.12.051) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 6 Summary of the Activation Sequence in Spines Containing Navs Activated channels are indicated by yellow edges, depolarizing currents by red arrows and Ca2+ entry by green arrows. (1) Schematic spine with conductances essential for postsynaptic signaling (see legend on the right). (2) Upon binding of glutamate, first AMPARs get activated, leading to depolarization of the spine. (3) AMPAR-mediated depolarization of the spine activates Navs, which in turn drive additional depolarization. (4) In the strongly depolarized spine HVACCs open, thus substantially increasing the spine calcium level and possibly promoting release of GABA. The delayed opening of NMDARs via AMPAR-mediated depolarization also contributes to the postsynaptic rise in Ca2+. Neuron 2015 85, 590-601DOI: (10.1016/j.neuron.2014.12.051) Copyright © 2015 Elsevier Inc. Terms and Conditions