Multiplying binomials This is called the Box method
Multiplying binomials A binomial has two terms. We will be multiplying pairs of numbers.
Example 1 Multiplying binomials – 3 x²
Example 1 Multiplying binomials – 3 x² -5x
Example 1 Multiplying binomials – 3 x² -5x -3x
Example 1 Multiplying binomials – 3 x² -5x -3x + 15
Example 1 Multiplying binomials x² - 5x – 3x + 15 x² -5x -3x + 15 Write in standard form.
Example 1 Multiplying binomials x² - 5x – 3x + 15 x² - 8x + 15 Combine Like Terms
Multiplying binomials x² - 8x + 15 Final Answer
Example 2 Multiplying binomials + 2 x²
Example 2 Multiplying binomials + 2 x² + 4x
Example 2 Multiplying binomials + 2 x² + 4x + 2x
Example 2 Multiplying binomials + 2 x² + 4x + 2x + 8
Example 2 Multiplying binomials x² + 4x + 2x + 8 x² + 4x + 2x + 8 Write in standard form.
Example 2 Multiplying binomials x² + 4x + 2x + 8 x² + 6x + 8 Combine Like Terms
Multiplying binomials x² + 6x + 8 Final Answer
Multiplying binomials Your final answer should always have an x² first and a whole number at the end. This is called standard form.
Multiplying binomials Try this one on your own: (x – 6)(x + 2) When everyone on your team is finished, click to check your final answer.
Multiplying binomials x² - 4x - 12 Final Answer