Volume 8, Issue 1, Pages (January 2015)

Slides:



Advertisements
Similar presentations
C2_At1g C2_At1g C2_At3g C2_At2g C2_At3g Chr. 2 cM C2_At1g C2_At4g C2_At3g
Advertisements

Structure and Activity of Strigolactones: New Plant Hormones with a Rich Future Binne Zwanenburg, Tomáš Pospíšil Molecular Plant Volume 6, Issue 1, Pages.
DIFFERENTIAL EXPRESSION LEVELS OF AROMA BIOSYNTHETIC GENES DURING RIPENING OF APRICOT (Prunus armeniaca L.) Defilippi, B.G. 1,*, González-Agüero, M. 1,
Developmental and Feedforward Control of the Expression of Folate Biosynthesis Genes in Tomato Fruit Waller Jeffrey C., Akhtar Tariq A., Lara-Núñez Aurora,
WRKY transcription factors in potato genome factors in potato genome
Yuming Lu, Jian-Kang Zhu  Molecular Plant 
MOLECULAR AND PHYSIOLOGICAL BASES OF AROMA BIOSYNTHESIS IN APRICOT FRUIT (Prunus armeniaca L.) Bruno G. Defilippi1*, Mauricio González-Agüero1, Sebastián.
Human Evolution: Turning Back the Clock
The Chemical Interactions Underlying Tomato Flavor Preferences
Volume 5, Issue 2, Pages (March 2012)
Volume 9, Issue 2, Pages (February 2016)
Zhu Hui-Fen , Fitzsimmons Karen , Khandelwal Abha , Kranz Robert G.  
Volume 10, Issue 7, Pages (July 2017)
E. Descloux, C. La Fuentez, Y. Roca, X. De Lamballerie 
Harnessing the Potential of the Tea Tree Genome
Volume 10, Issue 9, Pages (September 2017)
Zika virus genome from the Americas
Volume 10, Issue 6, Pages (June 2017)
L. Dubourg  Clinical Microbiology and Infection 
Guy Polturak, Asaph Aharoni  Molecular Plant 
Metabolic Inputs into the Epigenome
Volume 10, Issue 10, Pages (October 2017)
AtG3BP1 is a homolog of the human HsG3BP1.
Actin Polymerization Mediated by AtFH5 Directs the Polarity Establishment and Vesicle Trafficking for Pollen Germination in Arabidopsis  Chang Liu, Yi.
Volume 8, Issue 1, Pages (January 2015)
Volume 9, Issue 9, Pages (September 2016)
Volume 12, Issue 4, Pages (April 2019)
Metabolic Control of Chloroplast Gene Expression: An Emerging Theme
C. Kampmann, J. Dicksved, L. Engstrand, H. Rautelin 
Maximum-likelihood phylogenetic tree of norovirus genomes belonging to genogroup GI, with the norovirus GII reference genome as an outlier. Maximum-likelihood.
Volume 11, Issue 1, Pages (January 2018)
Volume 11, Issue 1, Pages (January 2018)
High-Throughput Identification and Quantification of Candida Species Using High Resolution Derivative Melt Analysis of Panfungal Amplicons  Tasneem Mandviwala,
Volume 6, Issue 6, Pages (November 2013)
Volume 11, Issue 3, Pages (March 2018)
Volume 9, Issue 1, Pages (January 2016)
Volume 21, Issue 4, Pages (February 2011)
Volume 8, Issue 7, Pages (July 2015)
Volume 10, Issue 4, Pages (April 2017)
Volume 10, Issue 5, Pages (May 2017)
Evidence that Environmental Heterogeneity Maintains a Detoxifying Enzyme Polymorphism in Drosophila melanogaster  Mahul Chakraborty, James D. Fry  Current.
Targeting Plant Ethylene Responses by Controlling Essential Protein–Protein Interactions in the Ethylene Pathway  Melanie M.A. Bisson, Georg Groth  Molecular.
PtrHB7, a class III HD-Zip Gene, Plays a Critical Role in Regulation of Vascular Cambium Differentiation in Populus  Yingying Zhu, Dongliang Song, Jiayan.
Volume 10, Issue 9, Pages (September 2017)
Volume 2, Issue 2, Pages (March 2009)
Dissection of miRNA Pathways Using Arabidopsis Mesophyll Protoplasts
Jefri Heyman, Lieven De Veylder  Molecular Plant 
Dicer-like Enzymes with Sequence Cleavage Preferences
Lexiang Ji, Drexel A. Neumann, Robert J. Schmitz  Molecular Plant 
Volume 11, Issue 6, Pages (June 2018)
Novel West Nile virus lineage 1a full genome sequences from human cases of infection in north-eastern Italy, 2011  L. Barzon  Clinical Microbiology and.
Volume 11, Issue 3, Pages (March 2018)
Volume 13, Issue 2, Pages (January 2003)
Construction of a Rice Glycosyltransferase Phylogenomic Database and Identification of Rice-Diverged Glycosyltransferases  Cao Pei-Jian , Bartley Laura.
Phylogenetic analysis of AquK2P.
Volume 12, Issue 3, Pages (March 2019)
A Structural Bisulfite Assay to Identify DNA Cruciforms
Volume 10, Issue 1, Pages (January 2017)
Fig. 3. Phylogenetic relationship of the replicons of the family Burkholderiaceae. An unrooted RAxML maximum ... Fig. 3. Phylogenetic relationship of the.
DELLA Proteins Promote Anthocyanin Biosynthesis via Sequestering MYBL2 and JAZ Suppressors of the MYB/bHLH/WD40 Complex in Arabidopsis thaliana  Ye Xie,
Molecular phylogenetic analysis of RNA polymerase II largest-subunit protein sequences from various trichomonads, including D. fragilis. Molecular phylogenetic.
Volume 8, Issue 2, Pages (February 2015)
Functional Insights of Plant GSK3-like Kinases: Multi-Taskers in Diverse Cellular Signal Transduction Pathways  Ji-Hyun Youn, Tae-Wuk Kim  Molecular Plant 
Reversible and Irreversible Drought-Induced Changes in the Anther Proteome of Rice (Oryza sativa L.) Genotypes IR64 and Moroberekan  Liu Jian-Xiang ,
Comparative Population Genomics Reveals Strong Divergence and Infrequent Introgression between Asian and African Rice  Xuehui Huang, Qiang Zhao, Bin Han 
H2A.Z at the Core of Transcriptional Regulation in Plants
Kaede for Detection of Protein Oligomerization
Volume 1, Issue 5, Pages (September 2008)
Volume 11, Issue 7, Pages (July 2018)
Volume 3, Issue 1, Pages (January 2010)
Presentation transcript:

Volume 8, Issue 1, Pages 153-162 (January 2015) Divergence in the Enzymatic Activities of a Tomato and Solanum pennellii Alcohol Acyltransferase Impacts Fruit Volatile Ester Composition  Charles Goulet, Yusuke Kamiyoshihara, Nghi B. Lam, Théo Richard, Mark G. Taylor, Denise M. Tieman, Harry J. Klee  Molecular Plant  Volume 8, Issue 1, Pages 153-162 (January 2015) DOI: 10.1016/j.molp.2014.11.007 Copyright © 2015 The Author Terms and Conditions

Figure 1 Phylogenetic Analysis of the Protein Sequences of the Five Tomato AATs and Representative AATs from Additional Species. The trees were inferred by using the maximum likelihood method. The percentage of trees in which the associated taxa are clustered together is shown next to the branches. The trees are drawn to scale, with branch lengths measured in the number of substitutions per site. GenBank accession numbers are as follows: AcAT16 (HO772640), AeAT9 (HO772637), BanAAT (CAC09063), BPBT (AAU06226), CbBEAT (AF043464), CbBEBT (AAN09796), CmAAT1 (CAA94432), CmAAT2 (AAL77060), CmAAT3 (AAW51125), CmAAT4 (AAW51126), FaAAT2 (JN089766), MdAAT2 (AAS79797), MpAAT1 (AY707098), RhAAT1 (AAW31948), SAAT (AAG13130), VAAT (AX025504), and VpAAT1 (FJ548611). Molecular Plant 2015 8, 153-162DOI: (10.1016/j.molp.2014.11.007) Copyright © 2015 The Author Terms and Conditions

Figure 2 Alcohol Acyltransferases Expression in S. lycopersicum cv. M82 Fruit. (A) Transcript abundance of the five SlAAT in ripe fruit (±SE, n = 4). (B) Transcript levels of SlAAT1 in four stages of fruit development (immature green, breaker, turning, ripe) (±SE, n = 4). Molecular Plant 2015 8, 153-162DOI: (10.1016/j.molp.2014.11.007) Copyright © 2015 The Author Terms and Conditions

Figure 3 Silencing SlAAT1 in Tomato Decreases the Emission of Esters. (A) Transcript levels of SlAAT1 in ripe fruits of three silenced transgenic lines relative to their control, Flora-Dade (±SE, n = 6). (B) Emission rate of ester volatiles from the cut tomato fruits of transgenic plants and their control (±SE, n = 6) (**P < 0.01). Molecular Plant 2015 8, 153-162DOI: (10.1016/j.molp.2014.11.007) Copyright © 2015 The Author Terms and Conditions

Figure 4 Emission Rate of Acetate Ester Volatiles from the Cut Tomato Fruits of M82 (Control) and the Introgression Line 8-1-5 (±SE, n = 6). All esters detected are significantly different between M82 and IL 8-1-5 (P < 0.01). Molecular Plant 2015 8, 153-162DOI: (10.1016/j.molp.2014.11.007) Copyright © 2015 The Author Terms and Conditions

Figure 5 Specific Activity of SlAAT1 and SpAAT1 for Different Alcohols Found in Tomato (±SE, n = 3). (A) The transferase activity was measured with 5 mM of each alcohol and 0.01 mM of acetyl-CoA. The differences in activity between the S. lycopersicum and the S. pennellii enzyme are significant for all the substrates (P < 0.01) except sec-butanol. (B) Molecular structure of the alcohols used in the assay with the corresponding numbers used in (A). Molecular Plant 2015 8, 153-162DOI: (10.1016/j.molp.2014.11.007) Copyright © 2015 The Author Terms and Conditions

Figure 6 Specific Activity of SlAAT1 and SpAAT1 for Different Acyl-CoAs (±SE, n = 3). The assay was performed with 20 mM of 2-methyl-1-butanol and 0.01 mM of each acyl-CoA (C2, C3, C4, and C6). The differences in activity between the S. lycopersicum and the S. pennellii enzyme are significant for all the substrates (P < 0.01) except acetyl-CoA. Molecular Plant 2015 8, 153-162DOI: (10.1016/j.molp.2014.11.007) Copyright © 2015 The Author Terms and Conditions

Figure 7 Balance between Ester Synthesis and Degradation in the Fruits of Tomato and S. pennellii. S. pennellii accumulates a large amount of ester volatiles, while the content remains low in tomato.SpAAT1 is more efficient overall in ester synthesis and prefers different alcohols than SlAAT1. SlCXE1 is highly expressed in tomato resulting in a rapid conversion back to the alcohol pool. The low expression rate of SpCXE1, illustrated by a dashed line, prevents significant degradation of the esters in S. pennellii. Molecular Plant 2015 8, 153-162DOI: (10.1016/j.molp.2014.11.007) Copyright © 2015 The Author Terms and Conditions