Figure Postcontrast axial and coronal brain MRI in a patient with CLIPPERS treated with hydroxychloroquineT1-weighted spin echo post IV gadolinium contrast.

Slides:



Advertisements
Similar presentations
Neurology Resident and Fellow Section
Advertisements

Figure 1 Initial brain imaging (A–C) patient 1; (D–F) patient 2; (G–I) patient 3; (J–L) patient 4; and (M) patient 2. Initial brain imaging (A–C) patient.
Figure Lumbar spine MRI obtained on hospital day 2 demonstrating nerve root enhancement and evolution of CSF and electrodiagnostic findings Lumbar spine.
Figure 3 Brain MRI findings in patients with MOG-Ab Extensive brain lesions with large diameter (A and B), posterior reversible encephalopathy–like lesions.
Figure 1 Brain MRI findings in the present case
Figure 4. Brain imaging and neuropathologic demonstration of Epstein-Barr virus (EBV) encephalitis in patient PT-10 Brain imaging and neuropathologic demonstration.
Figure MRI of anti-MOG-IgG–associated myelitis
Figure 2 Evolution of MRI abnormalities in faciobrachial dystonic seizures Axial fluid- attenuated inversion recovery (FLAIR)-weighted images from patient.
Figure 2 Orbital MRI findings One-third of myelin oligodendrocyte glycoprotein antibody–positive patients revealed extensive enhancement patterns that.
Figure Neuroimaging and pathology
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure Facial photograph during headache attack and brain and upper cervical cord MRI Facial photograph during headache attack and brain and upper cervical.
Figure Brain MRI of the patient throughout the disease course(A) Brain MRI at the time of cerebral toxoplasmosis diagnosis (a) and after 1 month of toxoplasmosis.
Case 2. Case 2. A and B, T2-weighted images (fast spin-echo sequence with parameters of 4500/96 [TR/TE]) show diffuse hyperintense lesions in the white.
Figure 3 Example of venous narrowing
Figure Immune checkpoint inhibitor–induced encephalitis before and after treatment with natalizumab Immune checkpoint inhibitor–induced encephalitis before.
Figure 1 MRI head in faciobrachial dystonic seizures (A) Axial fluid-attenuated inversion recovery image from patient 3 in table 2 shows T2-weighted hyperintensity.
Figure Radiographic and histopathologic findings (A) Brain MRI at presentation shows multiple areas of T2 hyperintensity in the mesial temporal lobes,
Figure 1. Prebiopsy and postbiopsy MRI
Figure 1. Brain MRI follow-up of Sjögren syndrome–associated type II mixed cryoglobulinemic cerebral vasculitis treated with rituximab Brain MRI follow-up.
Figure Brain MRI and biopsy specimens from the pontine lesion
Figure Longitudinal MRI study data demonstrating evolution of central pontine myelinolysis(A, B) Axial T2-weighted MRI of the brain from January 9, 2014,
Figure Radiologic and histopathologic findings in a patient with IgG4-related intracranial hypertrophic pachymeningitis(A–D) Radiologic findings over 10.
Figure MRI and leptomeningeal biopsy findings in Vogt-Koyanagi-Harada syndrome involving the cerebellopontine angle(A) Coronal and (B) axial gadolinium-enhanced.
Figure 1 Quantitative spinal cord MRI maps and segmentations
Figure 4 Comparison of 7.0T and 3.0T MRI (patients 5 and 6)‏
Figure 1 Neuropathologic examination of brain areas with normal MRI appearance and with gadolinium enhancement (patient 1)‏ Neuropathologic examination.
Figure MRIs and histopathology of the biopsy specimens
Figure 2 T2-weighted and subtraction images
Figure 2 Exemplary MRI of a patient with contrast enhancement on postcontrast FLAIR MRI of a 54-year-old patient with viral meningitis caused by varicella-zoster.
Figure 2 7T MRI can differentiate between early PML and MS lesions Two different patterns of brain lesions were observed using 7T MRI: ring-enhancing lesions.
Figure 3 Punctate PML lesions visualized by highly resolving T2
Figure Widespread leptomeningeal enhancementAxial T1 fat-saturated postcontrast image (A) demonstrates abnormal leptomeningeal enhancement of bilateral.
Figure 3 Ultra-high-field MRI at 7.0T (patients 5 and 6)‏
Figure MRI and histology of demyelinating lesion(A) Symmetric T2 hyperintensity in the midbrain with relative sparing of cerebral peduncles. MRI and histology.
Figure 2 Example of venous narrowing
Figure 2 Representative brain MRIs from patients with neuromyelitis optica Lesions are localized at sites of high aquaporin-4 expression (white dots).
Figure 1 MRI of inflammatory myelitis before and after treatment
Figure 1 Radiologic features of human myelin oligodendrocyte glycoprotein immunoglobulin G–positive patients with cranial nerve involvement Radiologic.
The same patient as in Fig 3.
Figure 1 Evolution of blood cell counts during 18-month treatment and follow-up (A) Mean white blood cell count, (B) mean lymphocyte count, (C) mean eosinophil.
Figure 2 Cerebral and spinal MRI (A) Restricted diffusion of both optic nerves (arrows) on diffusion-weighted and apparent diffusion coefficient imaging.
Figure 1 JCV serostatus JCV serostatus (A) Serostatus of 1,921 natalizumab-treated patients with multiple sclerosis, with JCV− patients shown in black.
Figure 1 Annual trend in specimen type submitted as first sample for aquaporin-4 immunoglobulin G testing (serum only vs CSF only vs both) from 101,065.
Figure MRI brain 6 weeks post admission (A–C) Symmetrical high signal changes on fluid-attenuated inversion recovery sequences predominantly affecting.
Figure 1 Evolution of MRI findings during interleukin (IL)–7 therapy
Figure 1 Imaging of disease onset and treatment response Repeat MRI scans including fluid-attenuated inversion recovery (FLAIR) (A) and T2 fast field echo.
Figure Leptomeningeal inflammationPostcontrast T1-weighted MRI: abnormal leptomeningeal enhancement over the frontoparietal lobes and interhemispheric.
Figure 1 MRI findings over time
Figure 2 Pre- and posttreatment contrast-enhanced MRI of second toxoplasmosis lesion in case 1(A) Contrast-enhanced MRI demonstrated a second ring-enhancing.
Figure Imaging, histology/immunohistochemistry, and schematic course of treatment with corresponding clinical and radiologic disease activity Imaging,
Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.
Figure 1 Peripheral blood lymphocyte counts during dose titrationB-lymphocyte (CD19+; A) and total lymphocyte (CD45+; B) counts (cells/µL) in peripheral.
Figure Spinal cord imaging (A, B) Sagittal and axial T2-weighted cervical spine MRI demonstrating hyperintensities in the central gray matter of patient.
The same patient as in Fig 3.
Figure 2 Kaplan-Meier survival curves for the fingolimod cohort In each graph, bottom tertile: solid line; middle tertile: long dashed line; top tertile:
Figure Serial brain MRI of the patient with encephalitis and spontaneous recovery accompanying IgLON5 autoimmunity Serial brain MRI of the patient with.
A, Axial T1-weighted (700/17/1) MR image shows mild asymmetry of the lower basis pontis and middle cerebellar peduncle on the left. A, Axial T1-weighted.
Figure 1 MRIs (case 1)‏ MRIs (case 1) An enlarging T2 lesion in the cerebral white matter near the angular gyrus and a new lesion in the left middle cerebellar.
Figure 2 MRIs (cases 2 and 3)‏
Figure 1 Imaging and histopathologic characteristics of patients with CNS-FHL Imaging and histopathologic characteristics of patients with CNS-FHL FLAIR.
Figure MRI demonstrating cerebellar encephalitis, longitudinally extensive transverse myelitis, and pathology of seminoma(A) Parasagittal T1 postcontrast.
Figure Rapid progression of lesions after natalizumab treatment(A) MRI from February Rapid progression of lesions after natalizumab treatment(A)
Figure A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia.
Figure FDG-PET, lymph node biopsy, and brain MRI
Figure 4 Patient 3 MRI evolution over time
Figure 3 Patient 2 MRI evolution over time before relapse
Figure 2 Patient 1 MRI evolution over time
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
Figure 1 MRIs MRIs (A and B) Axial FLAIR images of the brain demonstrate multifocal parenchymal lesions including the right hippocampus, right midbrain,
Presentation transcript:

Figure Postcontrast axial and coronal brain MRI in a patient with CLIPPERS treated with hydroxychloroquineT1-weighted spin echo post IV gadolinium contrast media axial (A) and coronal (B) sequences show the temporal evolution of changes in this patient. Postcontrast axial and coronal brain MRI in a patient with CLIPPERS treated with hydroxychloroquineT1-weighted spin echo post IV gadolinium contrast media axial (A) and coronal (B) sequences show the temporal evolution of changes in this patient. The August 2009 scan demonstrates punctate and curvilinear enhancement predominantly in the pons and right middle cerebellar peduncle (indicated by arrows), which is characteristic of CLIPPERS. These changes progressed over 8 months, as evidenced on the April 2010 scan. The patient commenced hydroxychloroquine in May 2010, and the scan performed in August 2010, after 2 months of treatment, shows complete resolution of the pontine and right cerebellar peduncle enhancement. The patient remained on hydroxychloroquine and there is no evidence of recurrence on the scan from November 2013. Boon Loong Tan et al. Neurol Neuroimmunol Neuroinflamm 2015;2:e56 © 2015 American Academy of Neurology