New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post- translationally Modified Peptide Natural Products  Manuel A. Ortega, Wilfred A.

Slides:



Advertisements
Similar presentations
Debosmita Sardar, Zhenjian Lin, Eric W. Schmidt  Chemistry & Biology 
Advertisements

Metagenomic Approaches for Exploiting Uncultivated Bacteria as a Resource for Novel Biosynthetic Enzymology  Micheal C. Wilson, Jörn Piel  Chemistry &
Interactions between Autophagy Receptors and Ubiquitin-like Proteins Form the Molecular Basis for Selective Autophagy  Vladimir Rogov, Volker Dötsch,
One-Pot Synthesis of Azoline-Containing Peptides in a Cell-free Translation System Integrated with a Posttranslational Cyclodehydratase  Yuki Goto, Yumi.
Travis S. Young, Pieter C. Dorrestein, Christopher T. Walsh 
Volume 20, Issue 8, Pages (August 2013)
Zachary Lee Johnson, Jue Chen  Cell 
Ubiquitination Accomplished: E1 and E2 Enzymes Were Not Necessary
Nature’s Strategy for Catalyzing Diels-Alder Reaction
FUS Zigzags Its Way to Cross Beta
Volume 20, Issue 6, Pages (June 2013)
Volume 21, Issue 11, Pages (November 2014)
Ready, Set, Go! How Protein Kinase C Manages Dynamic Signaling
Finding the Missing Code of RNA Recognition by PUF Proteins
Marcel Zimmermann, Julian D. Hegemann, Xiulan Xie, Mohamed A. Marahiel 
Volume 15, Issue 8, Pages (August 2007)
Volume 18, Issue 8, Pages (August 2010)
Protein Kinase C Regulation: C1 Meets C-tail
Volume 124, Issue 2, Pages (January 2006)
Volume 19, Issue 7, Pages (July 2012)
AnchorDock: Blind and Flexible Anchor-Driven Peptide Docking
Nitzan Koppel, Emily P. Balskus  Cell Chemical Biology 
Volume 108, Issue 6, Pages (March 2002)
Volume 25, Issue 2, Pages e4 (February 2018)
William J. Zuercher, Jonathan M. Elkins, Stefan Knapp 
Volume 19, Issue 11, Pages (November 2012)
Traffic Jam at the Bacterial Sec Translocase: Targeting the SecA Nanomotor by Small- Molecule Inhibitors  Kenneth Segers, Jozef Anné  Chemistry & Biology 
Identification and Characterization of the Lysobactin Biosynthetic Gene Cluster Reveals Mechanistic Insights into an Unusual Termination Module Architecture 
Volume 23, Issue 10, Pages (October 2016)
Adaptive Assembly: Maximizing the Potential of a Given Functional Peptide with a Tailor-Made Protein Scaffold  Hideki Watanabe, Shinya Honda  Chemistry.
Volume 24, Issue 1, Pages (October 2006)
RNA-DNA Triplex Formation by Long Noncoding RNAs
Volume 15, Issue 1, Pages (January 2007)
Volume 24, Issue 3, Pages (March 2017)
Yihan Wu, Mohammad R. Seyedsayamdost  Cell Chemical Biology 
Volume 175, Issue 1, Pages 6-9 (September 2018)
Riboswitches: Fold and Function
G. Fiorin, A. Pastore, P. Carloni, M. Parrinello  Biophysical Journal 
Seisuke Yamashita, Kozo Tomita  Structure 
Volume 133, Issue 1, Pages (April 2008)
Volume 133, Issue 7, Pages (June 2008)
A Subdomain Swap Strategy for Reengineering Nonribosomal Peptides
Volume 18, Issue 7, Pages (July 2011)
Volume 90, Issue 1, Pages (July 1997)
Sachin Surade, Tom L. Blundell  Chemistry & Biology 
Structural Basis of EZH2 Recognition by EED
Volume 25, Issue 11, Pages e4 (November 2017)
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
Volume 16, Issue 4, Pages (April 2009)
Elegant Metabolite Biosynthesis
Meigang Gu, Kanagalaghatta R. Rajashankar, Christopher D. Lima 
Volume 16, Issue 2, Pages (February 2009)
Nature’s Strategy for Catalyzing Diels-Alder Reaction
Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids  Peter A. Jordan,
A Family of Pyrazinone Natural Products from a Conserved Nonribosomal Peptide Synthetase in Staphylococcus aureus  Michael Zimmermann, Michael A. Fischbach 
Volume 127, Issue 2, Pages (October 2006)
Volume 21, Issue 7, Pages (July 2014)
Molecular Similarity Analysis Uncovers Heterogeneous Structure-Activity Relationships and Variable Activity Landscapes  Lisa Peltason, Jürgen Bajorath 
Structural Basis for Kinase-Mediated Macrolide Antibiotic Resistance
Volume 21, Issue 5, Pages (May 2014)
Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy  Sarah R. Hengel, M. Ashley Spies, Maria Spies 
Brett K. Kaiser, Matthew C. Clifton, Betty W. Shen, Barry L. Stoddard 
Debosmita Sardar, Zhenjian Lin, Eric W. Schmidt  Chemistry & Biology 
Yogesh K. Gupta, Deepak T. Nair, Robin P. Wharton, Aneel K. Aggarwal 
Structural Switch of the γ Subunit in an Archaeal aIF2αγ Heterodimer
Volume 25, Issue 4, Pages e4 (April 2018)
Volume 15, Issue 10, Pages (October 2008)
Strategies for Engineering Natural Product Biosynthesis in Fungi
Ribosomal translocation: EF-G turns the crank
Volume 25, Issue 1, Pages (January 2017)
Presentation transcript:

New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post- translationally Modified Peptide Natural Products  Manuel A. Ortega, Wilfred A. van der Donk  Cell Chemical Biology  Volume 23, Issue 1, Pages 31-44 (January 2016) DOI: 10.1016/j.chembiol.2015.11.012 Copyright © 2016 Elsevier Ltd Terms and Conditions

Cell Chemical Biology 2016 23, 31-44DOI: (10. 1016/j. chembiol. 2015 Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 1 A Window into RiPP Biosynthesis (A) Schematic RiPP biosynthetic pathway. Representative RiPP biosynthetic gene cluster wherein each gene encodes a biosynthetic enzyme color-coded by the modification it catalyzes. Dotted circles represent amino acids within the leader peptide. Full circles represent amino acids within the core region. (B) Chemical structures of select RiPP subfamily members. Structural features defining a particular RiPP subfamily are shown in blue. Additional PTMs are shown in red. Cell Chemical Biology 2016 23, 31-44DOI: (10.1016/j.chembiol.2015.11.012) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 2 Overview of PTMs in Lasso Peptides, Cyanobactins, and Lanthipeptides (A) Proposed biosynthetic scheme during the maturation of the lasso peptide microcin J25. Leader peptide is shown as dotted circles; core peptide is shown as a line. (B) PTMs often present in cyanobactins. (C) Proposed mechanism for the formation of azolines in cyanobactins catalyzed by YcaO-like cyclodehydratases. (D) Common PTMs found in lanthipeptides. (E and F) Proposed dehydration mechanism employed by (E) class I lanthipeptide dehydratases and (F) class II–IV lanthionine synthetases. (G) Proposed cyclization mechanism in lanthipeptides. Xn, connecting peptide. Cell Chemical Biology 2016 23, 31-44DOI: (10.1016/j.chembiol.2015.11.012) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 3 Overview of PTMs in Thiopeptides, Sactipeptides, and Streptide (A) Putative macrocyclization mechanism involved in the generation of the characteristic central six-membered nitrogen-containing heterocycle in thiopeptides. To date no direct evidence favoring either a concerted or stepwise mechanism has been provided. (B) Proposed steps involved in the generation of MIA during nosiheptide biosynthesis catalyzed by NosL. (C) Trp methylation catalyzed by TsrM during thiostrepton biosynthesis. (D and E) Overview of SAM-dependent transformations during (D) sactipeptide and (E) streptide biosynthesis. Xn, connecting peptide. Cell Chemical Biology 2016 23, 31-44DOI: (10.1016/j.chembiol.2015.11.012) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 4 Leader-Peptide Removal by RiPP PCATs (A) General domain architecture of PCAT enzymes. (B) Proposed model of leader-peptide removal with concomitant transport catalyzed by PCATs. Cartoon representing the complex in its ATP-free (left) and ATP-bound (right) forms. Figure adapted from Lin et al. (2015). TMD, transmembrane domain; NBD, nucleotide-binding domain. Cell Chemical Biology 2016 23, 31-44DOI: (10.1016/j.chembiol.2015.11.012) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 5 Recognition of the Leader Peptide by the RiPP Biosynthetic Machinery (A and B) Cartoon (top) and surface (bottom) representation of the wHTH motif in (A) NisB in complex with NisA (PDB ID 4WD9) and (B) LynD in complex with PatE′ (PDB ID 4V1T). PatE′ and NisA leader peptides are shown in red (top) or green (bottom). (C and D) Cartoon representation of (C) PqqD (PDB ID 3G2B) and of (D) the putative leader peptide binding site in CylM (PDB ID 5DZT). In all structures α helices are shown in cyan, and β sheets are shown in magenta. Cell Chemical Biology 2016 23, 31-44DOI: (10.1016/j.chembiol.2015.11.012) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 6 General Strategy for RiPP Genome Mining and Structural Characterization BGC, biosynthetic gene cluster. Cell Chemical Biology 2016 23, 31-44DOI: (10.1016/j.chembiol.2015.11.012) Copyright © 2016 Elsevier Ltd Terms and Conditions