Volume 101, Issue 4, Pages (August 2011)

Slides:



Advertisements
Similar presentations
Tryptophan-Lipid Interactions in Membrane Protein Folding Probed by Ultraviolet Resonance Raman and Fluorescence Spectroscopy Katheryn M. Sanchez, Guipeun.
Advertisements

Not Just an Oil Slick: How the Energetics of Protein-Membrane Interactions Impacts the Function and Organization of Transmembrane Proteins  Sayan Mondal,
4. organization of pigments
Volume 102, Issue 7, Pages (April 2012)
Voltage Dependence of Proton Pumping by Bacteriorhodopsin Is Regulated by the Voltage-Sensitive Ratio of M1 to M2  G. Nagel, B. Kelety, B. Möckel, G.
Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
A Protein Dynamics Study of Photosystem II: The Effects of Protein Conformation on Reaction Center Function  Sergej Vasil’ev, Doug Bruce  Biophysical.
Volume 109, Issue 6, Pages (September 2015)
Volume 106, Issue 6, Pages (March 2014)
Chlorophyll b to Chlorophyll a Energy Transfer Kinetics in the CP29 Antenna Complex: A Comparative Femtosecond Absorption Study between Native and Reconstituted.
Volume 93, Issue 7, Pages (October 2007)
Istvan Szundi, Trevor E. Swartz, Roberto A. Bogomolni 
Volume 112, Issue 2, Pages (January 2017)
Volume 80, Issue 3, Pages (March 2001)
Ligand-Induced Protein Responses and Mechanical Signal Propagation Described by Linear Response Theories  Lee-Wei Yang, Akio Kitao, Bang-Chieh Huang,
Volume 91, Issue 8, Pages (October 2006)
Daniel M. Freed, Peter S. Horanyi, Michael C. Wiener, David S. Cafiso 
Dynamics of Active Semiflexible Polymers
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Volume 101, Issue 6, Pages (September 2011)
Volume 95, Issue 5, Pages (September 2008)
Xiche Hu, Klaus Schulten  Biophysical Journal 
Sapun H. Parekh, Young Jong Lee, Khaled A. Aamer, Marcus T. Cicerone 
Photochemical Reaction Dynamics of the Primary Event of Vision Studied by Means of a Hybrid Molecular Simulation  Shigehiko Hayashi, Emad Tajkhorshid,
Volume 95, Issue 12, Pages (December 2008)
Marc Jendrny, Thijs J. Aartsma, Jürgen Köhler  Biophysical Journal 
Carotenoid-to-Chlorophyll Energy Transfer in Recombinant Major Light-Harvesting Complex (LHCII) of Higher Plants. I. Femtosecond Transient Absorption.
Volume 106, Issue 6, Pages (March 2014)
Jana Humpolíčková, Aleš Benda, Jörg Enderlein  Biophysical Journal 
Volume 108, Issue 6, Pages (March 2015)
Jérôme Lang, Amandine Maréchal, Manon Couture, Jérôme Santolini 
Emel Ficici, Daun Jeong, Ioan Andricioaei  Biophysical Journal 
Michael J. Reddish, Robert Callender, R. Brian Dyer 
Volume 101, Issue 4, Pages (August 2011)
Volume 110, Issue 11, Pages (June 2016)
Molecular Recognition of CXCR4 by a Dual Tropic HIV-1 gp120 V3 Loop
Volume 113, Issue 6, Pages (September 2017)
Arend Vogt, Jonas Wietek, Peter Hegemann  Biophysical Journal 
Haden L. Scott, Justin M. Westerfield, Francisco N. Barrera 
Molecular-Dynamics Simulations of the ATP/apo State of a Multidrug ATP-Binding Cassette Transporter Provide a Structural and Mechanistic Basis for the.
Volume 101, Issue 4, Pages (August 2011)
Yusuke Nakasone, Kazunori Zikihara, Satoru Tokutomi, Masahide Terazima 
Comparative Molecular Dynamics Simulation Studies of Protegrin-1 Monomer and Dimer in Two Different Lipid Bilayers  Huan Rui, Jinhyuk Lee, Wonpil Im 
Murat Çetinbaş, Eugene I. Shakhnovich  Biophysical Journal 
Volume 99, Issue 2, Pages (July 2010)
Volume 108, Issue 6, Pages (March 2015)
Low-Temperature Electron Transfer from Cytochrome to the Special Pair in Rhodopseudomonas viridis: Role of the L162 Residue  José M. Ortega, Barbara Dohse,
Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter- nucleosome Interaction  Ruihan Zhang, Jochen Erler, Jörg Langowski  Biophysical.
Molecular Interactions of Alzheimer's Biomarker FDDNP with Aβ Peptide
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Site-Directed Spin-Labeling Study of the Light-Harvesting Complex CP29
Volume 97, Issue 1, Pages (July 2009)
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Volume 103, Issue 5, Pages (September 2012)
Replica Exchange Molecular Dynamics Simulations Provide Insight into Substrate Recognition by Small Heat Shock Proteins  Sunita Patel, Elizabeth Vierling,
Dynamics of Active Semiflexible Polymers
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Volume 111, Issue 1, Pages (July 2016)
Volume 108, Issue 11, Pages (June 2015)
Two Latent and Two Hyperstable Polymeric Forms of Human Neuroserpin
Volume 97, Issue 8, Pages (October 2009)
Volume 94, Issue 12, Pages (June 2008)
Volume 93, Issue 10, Pages (November 2007)
Molecular Dynamics Simulations of the Rotary Motor F0 under External Electric Fields across the Membrane  Yang-Shan Lin, Jung-Hsin Lin, Chien-Cheng Chang 
Nevra Ozer, Celia A. Schiffer, Turkan Haliloglu  Biophysical Journal 
Volume 94, Issue 12, Pages (June 2008)
Mijo Simunovic, Gregory A. Voth  Biophysical Journal 
Volume 99, Issue 1, Pages (July 2010)
Volume 97, Issue 7, Pages (October 2009)
Volume 107, Issue 9, Pages (November 2014)
Presentation transcript:

Volume 101, Issue 4, Pages 934-942 (August 2011) Molecular Adaptation of Photoprotection: Triplet States in Light-Harvesting Proteins  Andrew Gall, Rudi Berera, Maxime T.A. Alexandre, Andrew A. Pascal, Luc Bordes, Maria M. Mendes-Pinto, Sandra Andrianambinintsoa, Katerina V. Stoitchkova, Alessandro Marin, Leonas Valkunas, Peter Horton, John T.M. Kennis, Rienk van Grondelle, Alexander Ruban, Bruno Robert  Biophysical Journal  Volume 101, Issue 4, Pages 934-942 (August 2011) DOI: 10.1016/j.bpj.2011.05.057 Copyright © 2011 Biophysical Society Terms and Conditions

Figure 1 Evolution-associated difference spectra (EADS) of LHCII excited at 400 nm. The EADS spectra correspond to the 100 fs (black), 1 ps (red), 14.9 ps (blue), 3.9 ns (green; Chl excited-state lifetime), and infinite (magenta) lifetimes. The Chl a singlet excited signal that is characterized by ground-state bleach at ∼675 nm within 3.9 ns is replaced by the carotenoid triplet spectrum (magenta). (Inset) Kinetic traces at 511 nm, the maximum of the T1→Tn transition, and at 675 nm, corresponding to the maximum of the Chl a bleach signal; for clarity, the magnitude of the latter trace has been reduced 10-fold. Biophysical Journal 2011 101, 934-942DOI: (10.1016/j.bpj.2011.05.057) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 2 Global analysis of step-scan FTIR data of LHCII excited at 475 nm showing the lutein-Chl shared triplet state. (A) The DADS have a 20 μs component (black line, DADS1), with an amplitude of 90% (lutein-Chl shared triplet) and a nondecaying component (blue line, DADS2) that has an amplitude of 10% (unquenched Chls). For clarity, the spectra have been normalized to the keto modes. (B and C) For comparison, the FTIR of the lutein (B) and Chl a (C) triplet (redrawn from Bonetti et al. (26)) in THF are also plotted. Biophysical Journal 2011 101, 934-942DOI: (10.1016/j.bpj.2011.05.057) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 3 Raman spectra (800–1650cm−1) of the LH2 complex from Rbl. acidophilus in resonance with the carotenoid rhodopin glucoside. (A) The subpopulation attributed to triplet carotenoid increases with laser power. (B) The deduced triplet-state Raman spectrum of rhodopin glucoside. T = 77 K, λex =514.5 nm. Biophysical Journal 2011 101, 934-942DOI: (10.1016/j.bpj.2011.05.057) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 4 Power-induced triplet excited-state resonance Raman spectra in the v1 (A) and v4 (B) regions of the carotenoid molecules in LHCII trimers excited at 514.5 and 528.7 nm. The blue and black traces were obtained after excitation with 30 μW and 200 μW, respectively. The red traces are the difference spectra and are ascribed to the positions of the triplet states (these are magnified in the v1 region). Also shown is the power-induced triplet excited-state resonance Raman spectra in the v1 region of CP43 trimers when excited at 528.7 nm. T = 77 K. Biophysical Journal 2011 101, 934-942DOI: (10.1016/j.bpj.2011.05.057) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 5 Organization of the (bacterio)chlorophyll and carotenoid molecules in LH2 and LHCII. (A) A slice of the nonameric structure of the LH2 complex from Rbl. acidophilus viewed in parallel with the membrane plane and from the outside of the protein. For clarity the central outer helix from three α/β-apoprotein dimers has been removed, allowing the interaction of the carotenoid (orange) with its nearest neighbor, (B)Chl a (green) molecules to be visualized. The contacts between Car and (B)Chl molecules essentially occur at the very end of the C=C conjugated chain of the carotenoid. Protein Data Bank accession number 1KZU. (B) View of a monomer of LHCII from Spinacia oleracea in parallel with the membrane plane. The colors of the two luteins (L), neoxanthin (neo), and xanthophyll (xan) cycle carotenoids are orange, purple, and magenta, respectively. The Chl a and Chl b molecules are colored green and blue, respectively. The closest contacts between Chl a and luteins in LHCII occur at the middle of the C=C polyenic chain. Although the Chl molecules have a pseudosymmetry within the monomer, lutein 1 (L1) and lutein 2 (L2) experience a different protein environment. Protein Data Bank accession number 1RWT. Biophysical Journal 2011 101, 934-942DOI: (10.1016/j.bpj.2011.05.057) Copyright © 2011 Biophysical Society Terms and Conditions