Volume 112, Issue 4, Pages (February 2017)

Slides:



Advertisements
Similar presentations
Membrane Physical Chemistry - II
Advertisements

DNA Base-Calling from a Nanopore Using a Viterbi Algorithm
Daichi Okuno, Masayoshi Nishiyama, Hiroyuki Noji  Biophysical Journal 
External Tetraethylammonium As a Molecular Caliper for Sensing the Shape of the Outer Vestibule of Potassium Channels  Frank Bretschneider, Anja Wrisch,
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Volume 102, Issue 11, Pages (June 2012)
High-Density 3D Single Molecular Analysis Based on Compressed Sensing
Vishwanath Jogini, Benoît Roux  Biophysical Journal 
Volume 99, Issue 1, Pages (July 2010)
Sizing DNA Using a Nanometer-Diameter Pore
Single-Molecule TPM Studies on the Conversion of Human Telomeric DNA
Volume 102, Issue 8, Pages (April 2012)
J. Muzard, M. Martinho, J. Mathé, U. Bockelmann, V. Viasnoff 
Physical Properties of Escherichia coli Spheroplast Membranes
One-Dimensional Brownian Motion of Charged Nanoparticles along Microtubules: A Model System for Weak Binding Interactions  Itsushi Minoura, Eisaku Katayama,
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Volume 96, Issue 2, Pages (January 2009)
Nanopore Sequencing: Forcing Improved Resolution
Marc Jendrny, Thijs J. Aartsma, Jürgen Köhler  Biophysical Journal 
Tianhui Maria Ma, J. Scott VanEpps, Michael J. Solomon 
Quantifying Cell Adhesion through Impingement of a Controlled Microjet
Taylor Fuselier, William C. Wimley  Biophysical Journal 
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Volume 96, Issue 4, Pages (February 2009)
Theoretical and Computational Investigation of Flagellin Translocation and Bacterial Flagellum Growth  David E. Tanner, Wen Ma, Zhongzhou Chen, Klaus.
Smooth DNA Transport through a Narrowed Pore Geometry
Volume 106, Issue 6, Pages (March 2014)
Microscopic Kinetics of DNA Translocation through Synthetic Nanopores
DNA Translocation Governed by Interactions with Solid-State Nanopores
Iftach Nir, Diana Huttner, Amit Meller  Biophysical Journal 
Ben Corry, Serdar Kuyucak, Shin-Ho Chung  Biophysical Journal 
Volume 110, Issue 10, Pages (May 2016)
Modulating Vesicle Adhesion by Electric Fields
Noise Underlies Switching Behavior of the Bacterial Flagellum
Volume 100, Issue 10, Pages (May 2011)
Kinesin Moving through the Spotlight: Single-Motor Fluorescence Microscopy with Submillisecond Time Resolution  Sander Verbrugge, Lukas C. Kapitein, Erwin.
Daichi Okuno, Masayoshi Nishiyama, Hiroyuki Noji  Biophysical Journal 
Modeling Diverse Range of Potassium Channels with Brownian Dynamics
Real-Time Nanopore-Based Recognition of Protein Translocation Success
F.G.A. Faas, B. Rieger, L.J. van Vliet, D.I. Cherny 
Volume 108, Issue 1, Pages 5-9 (January 2015)
Teuta Pilizota, Joshua W. Shaevitz  Biophysical Journal 
Enhanced Tethered-Particle Motion Analysis Reveals Viscous Effects
Chetan Poojari, Dequan Xiao, Victor S. Batista, Birgit Strodel 
Clustering of Cyclic-Nucleotide-Gated Channels in Olfactory Cilia
Volume 111, Issue 1, Pages (July 2016)
M. Boström, D.R.M. Williams, B.W. Ninham  Biophysical Journal 
Fredrik Elinder, Michael Madeja, Hugo Zeberg, Peter Århem 
Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives
Volume 114, Issue 3, Pages (February 2018)
Integrin Molecular Tension within Motile Focal Adhesions
Ion-Induced Defect Permeation of Lipid Membranes
Cyclic AMP Diffusion Coefficient in Frog Olfactory Cilia
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
J.P. Junker, K. Hell, M. Schlierf, W. Neupert, M. Rief 
Huan-Xiang Zhou, Osman Bilsel  Biophysical Journal 
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Modeling of Mitochondrial Donut Formation
Volume 107, Issue 3, Pages (August 2014)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Antonella Gradogna, Michael Pusch  Biophysical Journal 
Volume 98, Issue 11, Pages (June 2010)
Volume 97, Issue 7, Pages (October 2009)
Volume 114, Issue 6, Pages (March 2018)
Volume 115, Issue 6, Pages (September 2018)
Volume 108, Issue 8, Pages (April 2015)
Zackary N. Scholl, Weitao Yang, Piotr E. Marszalek  Biophysical Journal 
Volume 101, Issue 9, Pages (November 2011)
Volume 98, Issue 3, Pages (February 2010)
Presentation transcript:

Volume 112, Issue 4, Pages 674-682 (February 2017) Direction- and Salt-Dependent Ionic Current Signatures for DNA Sensing with Asymmetric Nanopores  Kaikai Chen, Nicholas A.W. Bell, Jinglin Kong, Yu Tian, Ulrich F. Keyser  Biophysical Journal  Volume 112, Issue 4, Pages 674-682 (February 2017) DOI: 10.1016/j.bpj.2016.12.033 Copyright © 2017 Biophysical Society Terms and Conditions

Figure 1 Schematic of DNA translocation and examples of ionic current traces. (A) Simplified diagram of DNA translocation through a conical glass nanopore with the voltage applied inside the conical nanopore. (B) SEM image of a typical nanopore tip, showing the outer dimensions. (C) Raw current traces (left) and current change ΔI (|I|-|Ibase|) for translocation events (right, with events marked in the green dashed rectangles) during 8 kbp DNA translocations through ∼15-nm-diameter pores in 4 M, 1 M, and 20 mM LiCl solutions at +600 mV (blue) and −600 mV (red). I-V curves for the pores are shown in Fig. S1. DNA was added on both sides with concentrations of 0.95 nM in 4 and 1 M LiCl solutions, and 0.19 nM in 20 mM LiCl solution. To see this figure in color, go online. Biophysical Journal 2017 112, 674-682DOI: (10.1016/j.bpj.2016.12.033) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 2 Event depths for forward and backward translocations in 2 and 4 M solutions. (A) Typical current changes for unfolded events during 8 kbp DNA translocations in 4 M LiCl, 2 M LiCl, 4 M KCl, and 2 M KCl solutions at ±600 mV. (B) Example of calculating the one-level current ΔI1-level with 491 events at 600 mV and 396 events at −600 mV in 4 M LiCl. (C and D) Absolute values of normalized ΔI1-level (ΔI1-level/|Ibase|) during 8 kbp DNA translocations in 4 and 2 M LiCl solutions. Error bars in (C) and (D) represent SDs of the Gaussian fit to the ionic current distributions. To see this figure in color, go online. Biophysical Journal 2017 112, 674-682DOI: (10.1016/j.bpj.2016.12.033) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 3 Direction-dependent event shapes for DNA translocations with 1 M salt concentration. (A) ΔI for unfolded events during 8 kbp DNA translocations in 1 M LiCl solution at ±600 mV. (B) ΔI for unfolded events during 8 kbp DNA translocations at different voltages in 1 M KCl solution. (C) Absolute values of normalized current change for forward translocations of 8 kbp DNA in 1 M KCl solution against voltage for three pores. Error bars in (C) show SDs of the Gaussian fit to the ionic current distributions. To see this figure in color, go online. Biophysical Journal 2017 112, 674-682DOI: (10.1016/j.bpj.2016.12.033) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 4 Current increase during backward translocations with 100 and 20 mM concentrations. (A and B) ΔI values for backward translocations of 8 kbp DNA in 100 and 20 mM KCl solutions. (C and D) The corresponding normalized one-level current as a function of voltage, with results for three pores at each salt concentration. Error bars in (C) and (D) show SDs of the Gaussian fit to the ionic current distributions. To see this figure in color, go online. Biophysical Journal 2017 112, 674-682DOI: (10.1016/j.bpj.2016.12.033) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 5 (A and B) Schematic of a DNA ruler (A) and ΔI (B) for DNA ruler translocations at ±600 mV with 1 M LiCl solution. To see this figure in color, go online. Biophysical Journal 2017 112, 674-682DOI: (10.1016/j.bpj.2016.12.033) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 6 Simulation for direction-dependent current blockades. (A and B) Sum of potassium and chloride ion concentrations (C(K+)+C(Cl−)) with particular DNA positions and with 1 M and 20 mM bulk KCl concentrations, respectively. The definition of the DNA position zDNA is shown in the top-right corner. (C and D) Current change as a function of DNA position at ±600 mV in 1 M KCl solution. (E) Current change as a function of DNA position at −600 mV in 20 mM KCl solution. Arrows show the directions of DNA translocation. A pore surface charge density, σpore, of −0.01 C/m2 and DNA surface charge density, σDNA, of −0.018 C/m2 are used in the simulation. To see this figure in color, go online. Biophysical Journal 2017 112, 674-682DOI: (10.1016/j.bpj.2016.12.033) Copyright © 2017 Biophysical Society Terms and Conditions