Chapter 1: Urban Services Lesson Plan

Slides:



Advertisements
Similar presentations
The Chinese Postman Problem Route Planning Map Colouring
Advertisements

Discrete Maths Chapter 5: Route Inspection Lesson 1: Chinese Postman.
Introduction to Graph Theory Instructor: Dr. Chaudhary Department of Computer Science Millersville University Reading Assignment Chapter 1.
Chapter 7 Graph Theory 7.1 Modeling with graphs and finding Euler circuits. Learning Objectives: Know how to use graphs as models and how to determine.
Section 14.1 Intro to Graph Theory. Beginnings of Graph Theory Euler’s Konigsberg Bridge Problem (18 th c.)  Can one walk through town and cross all.
BY: MIKE BASHAM, Math in Scheduling. The Bridges of Konigsberg.
Chapter 1: Urban Services Chapter at a Glance…
Euler Circuits and Paths
Koenigsberg bridge problem It is the Pregel River divided Koenigsberg into four distinct sections. Seven bridges connected the four portions of Koenigsberg.
E ULERIZING G RAPHS Notes 25 - Section 5.7. E SSENTIAL L EARNINGS Students will understand and be able to use Eulerization to find optimal exhaustive.
Homework collection Thursday 3/29 Read Pages 160 – 174 Page 185: 1, 3, 6, 7, 8, 9, 12 a-f, 15 – 20.
Euler and Hamilton Paths
Chapter 2: Business Efficiency Lesson Plan Business Efficiency  Visiting Vertices-Graph Theory Problem Hamiltonian Circuits  Vacation Planning Problem.
Graphs and Euler cycles Let Maths take you Further…
Math for Liberal Studies.  Here is a map of the parking meters in a small neighborhood  Our goal is to start at an intersection, check the meters, and.
1 Excursions in Modern Mathematics Sixth Edition Peter Tannenbaum.
Spring 2015 Mathematics in Management Science Euler’s Theorems Euler Circuits & Paths ECT & EPT Burning Bridges Fleury’s Algorithm.
5.1  Routing Problems: planning and design of delivery routes.  Euler Circuit Problems: Type of routing problem also known as transversability problem.
© Nuffield Foundation 2011 Nuffield Free-Standing Mathematics Activity Chinese postman problems What route can I take to avoid going along the same street.
Which of these can be drawn without taking your pencil off the paper and without going over the same line twice? If we can find a path that goes over all.
Euler and Hamilton Paths
There is a Postman who delivers mail to a certain neighborhood of streets. The postman is unwilling to walk far so he wants to find the shortest route.
Chinese postman problem
Spring 2015 Mathematics in Management Science Chinese Postman Problem What is CPP? CPP & ECs & EPs Fleury’s Algorithm Eulerization.
Chapter 2: Business Efficiency Lesson Plan
Graphs, Puzzles, & Map Coloring
Examples Euler Circuit Problems Unicursal Drawings Graph Theory
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 5 The Mathematics of Getting Around 5.1Euler Circuit Problems 5.2What.
Chapter 1: Urban Services Lesson Plan
Mathematics in Management Science
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 15 Graph Theory.
Chapter 6: Graphs 6.1 Euler Circuits
M Clements Formal Network Theory. Introduction Practical problem – The Seven Bridges of Königsberg Network graphs Nodes & edges Degrees Rules/ axioms.
Graph Theory Two Applications D.N. Seppala-Holtzman St. Joseph ’ s College.
Street Networks Ch. 1 Finite Math. Our Learning Goal (why am I doing this?) To be able to figure out the best path to choose when traveling a street network.
I can describe the differences between Hamilton and Euler circuits and find efficient Hamilton circuits in graphs. Hamilton Circuits I can compare and.
Grade 11 AP Mathematics Graph Theory Definition: A graph, G, is a set of vertices v(G) = {v 1, v 2, v 3, …, v n } and edges e(G) = {v i v j where 1 ≤ i,
MAT 110 Workshop Created by Michael Brown, Haden McDonald & Myra Bentley for use by the Center for Academic Support.
Chinese Postman Problem
Excursions in Modern Mathematics Sixth Edition
Excursions in Modern Mathematics Sixth Edition
Discrete Math and Management Science
Çizge Algoritmaları.
Konigsberg’s Seven Bridges
Chapter 2: Business Efficiency Lesson Plan
CSE 20: Discrete Mathematics for Computer Science Prof. Shachar Lovett
UNIT 1: EULER CIRCUITS GRAPH THEORY.
Discrete Maths 9. Graphs Objective
Chapter 2: Business Efficiency Lesson Plan
Spanning Trees Discrete Mathematics.
Can you draw this picture without lifting up your pen/pencil?
Euler Paths and Circuits
Euler Circuits and Paths
* Hamiltonian Circuits introduction
Graph Theory.
Nuffield Free-Standing Mathematics Activity
Chapter 2: Business Efficiency Business Efficiency
Introduction to Vertex-Edge graphs (2 days)
Chapter 1: Urban Services Lesson Plan
Graphs.
Excursions in Modern Mathematics Sixth Edition
5 The Mathematics of Getting Around
Konigsberg- in days past.
Route Inspection Which of these can be drawn without taking your pencil off the paper and without going over the same line twice? If we introduce a vertex.
Euler Circuits and Paths
5 The Mathematics of Getting Around
Chapter 1: Urban Services Chapter at a Glance…
Chapter 15 Graph Theory © 2008 Pearson Addison-Wesley.
Chapter 1: Urban Services Management Science
Applied Combinatorics, 4th Ed. Alan Tucker
Presentation transcript:

Chapter 1: Urban Services Lesson Plan For All Practical Purposes Management Science Optimal Solutions for Urban Services Euler Circuits Parking-Control Officer Problem Finding Euler Circuits Qualifications: Even Valence and Connectedness Beyond Euler Circuits Chinese Postman Problem Eulerizing a Graph Urban Graph Traversal Problems More practical applications and modifications Mathematical Literacy in Today’s World, 8th ed. 1 © 2009, W.H. Freeman and Company

Chapter 1: Urban Services Management Science Uses mathematical methods to help find optimal solutions to management problems. Often called Operations Research. Optimal Solutions — The best (most favorable) solution Government, business, and individuals all seek optimal results. Optimization problems: Finish a job quickly Maximize profits Minimize costs Urban Services to optimize: Checking parking meters Delivering mail Removing snow 2

Chapter 1: Urban Services Euler Circuits Street map for part of a town. Parking-Control Officer Problem Checking parking meters Our job is to find the most efficient route for the parking-control officer to walk as he checks the parking meters. Problem: Check the meters on the top two blocks. Goals for Parking-Control Officer Must cover all the sidewalks without retracing any more steps than necessary. Should end at the same point at which he began. Problem: Start and end at the top left-hand corner of the left-hand block. Euler circuit – A circuit that traverses each edge of a graph exactly once and starts and stops at the same point. 3

Chapter 1: Urban Services Euler Circuits Simplified graph (b) is enlarged to show the points (vertices) labeled with letters A – F which are linked by edges. Simplified graph (a) is superimposed on the streets with parking meters. Graph – A finite set of dots (vertices) and connecting links (edges). Graphs can represent our city map, air routes, etc. Vertex (pl. vertices) – A point (dot) in a graph where the edges meet. Edge – A link that joins two vertices in a graph (traverse edges). Path – A connected sequence of edges showing a route, described by naming the vertices traveled. Circuit – A path that starts and ends at the same vertex. 4

Chapter 1: Urban Services Euler Circuits Path vs. Circuit Paths – Paths can start and end at any vertex using the edges given. examples: NLB, NMRB, etc. Circuits – Paths that starts and ends at the same vertex. Examples: MRLM, LRBL, etc. Nonstop air routes Circuit vs. Euler Circuit (Both start and end at same vertex.) Circuits may retrace edges or not use all the edges. Euler circuits travel each edge once and cover all edges. 5

Chapter 1: Urban Services Finding Euler Circuits Two Ways to Find an Euler Circuit Trial and error Keep trying to create different paths to find one that starts and ends at the same point and does not retrace steps. Mathematical approach (better method) An Euler circuit exists if the following statements are true: All points (vertices) have even valence. The graph is connected. Leonhard Euler (1707–1783) Among other discoveries, he was credited with inventing the idea of a graph as well as the concepts of valence and connectedness. 6

Chapter 1: Urban Services Finding Euler Circuits Valence – The number of edges touching that vertex (counting spokes on the hub of a wheel). Connectedness – You can reach any vertex by traversing the edges given in the graph. Euler circuit – Has even-valent vertices and is connected. If vertices have odd valence, it is not an Euler circuit. 7

Proving Euler’s Theorem If a graph has an Euler circuit, it must have only even-valent vertices and it must be connected. This can be proved by pairing up edges at each vertex, thus proving all vertices have paired edges and further proving there is an even number of edges at each vertex, X. Thus, every edge at X has an incoming edge (arriving at vertex X) and an outgoing edge (leaving from vertex X). Example: At vertex B, you can pair up edges 2 and 3 and edges 9 and 10. An Euler circuit starting and ending at A

Chapter 1: Urban Services Finding Euler Circuits Is there an Euler Circuit? Does it have even valence? (Yes) Is the graph connected? (Yes) Euler circuit exists if both “yes.” Create (Find) an Euler Circuit Pick a point to start (if none has been given to you). Number the edges in order of travel, showing the direction with arrows. Cover every edge only once, and end at the same vertex where you started. 9

Chapter 1: Urban Services Beyond Euler Circuits Chinese Postman Problem In real life, not all problems will be perfect Euler circuits. If no Euler circuit exists (odd valences), you want to minimize the length of the circuit by carefully choosing the edges to be retraced. For our purposes, we assume all edges have the same length—simplified Chinese postman problem. Chinese mathematician Meigu Guan first studied this problem in 1962, hence the name. The blue dots indicate parking meters along the street. The graph represents edges with parking meters. Notice only vertices C and G have odd valence. 10

Chapter 1: Urban Services Beyond Euler Circuits Eulerize the Graph to Solve Chinese Postman Problem For graphs that are connected but have vertices with odd valence, we will want to reuse (duplicate) the minimum number of edges until all vertices appear to have even valence. Only existing edges can be duplicated (or added). Each edge that is duplicated (added) will later be the edge that will be reused during eulerization. A circuit is made by reusing the edge CG. Below, the graph is eulerized (starts and stops at same point and covers all “edges” once — including reused ones. The edge CG is reused, which would make all vertices appear to have even valence. 11

Chapter 1: Urban Services Beyond Euler Circuits Eulerizing a Graph On the graph, add edges by duplicating existing ones, until you arrive at a graph that is connected and even-valent. The graph below is an efficient eulerization because the fewest number of edges were added. Find an Euler circuit on the eulerized graph. Traverse every original and “added” edge once, as you find a circuit that starts and ends at the same vertex. “Squeeze” this Euler circuit from the eulerized graph onto the original graph by replacing the “added” edge with an arrow showing it was retraced. Only reuse (add) edge BC. Squeeze the eulerized circuit onto the graph. 12

Chapter 1: Urban Services Beyond Euler Circuits Hints for Eulerizing a Graph For the most efficient eulerization, look for the fewest edges to add to make all vertices even. Typically, locate odd valence vertices and try to reuse (add) the connecting edge between the vertices. Sometimes vertices are more than one edge apart; in this case, reuse edges between vertices (see graph below). Remember: Only duplicate (add to) the existing edges. Odd vertices, X and Y, are more than one edge apart. This is not allowed — must only reuse existing edges. Reuse existing edges between the odd vertices. 13

Chapter 1: Urban Services Beyond Euler Circuits Rectangular Networks – This is the name given to a street network composed of a series of rectangular blocks that form a large rectangle made up of so many blocks high by so many blocks wide. Eulerizing rectangular networks: “Edge Walker” Start in upper left corner (at A). Travel (clockwise) around the outer boundary. As you travel, add an edge by the following rules: If the vertex is odd, add an edge by linking it to the next vertex. If this next vertex becomes even, skip it (just keep “walking”). If this next vertex becomes odd, (on a corner) link it to the next vertex. Repeat this rule until you reach the upper left corner again. 14

Chapter 1: Urban Services Urban Graph Traversal Problem Euler Circuits and Eulerizing Graphs: Practical Applications Checking parking meters (discussed) Collecting garbage Salting icy roads Inspecting railroad tracks Special Requirements May Need to Be Addressed Traffic directions Number of streets/lanes (divided routes) Parking time restriction Theory Modifications Can Address Special Requirements A digraph (directed graph) is used to show one-way street. Arrows show restriction in traversal possibilities (not part of circuits). Territories may need to be divided into multiple routes. 15