Design study for a Helios-like spectrometer at LNS

Slides:



Advertisements
Similar presentations
Motivation Requirements Preliminary design Status Yaroslav Kalmykov Small Angle Magnet Institut für Kernphysik Technische Universität Darmstadt SFB 634.
Advertisements

Hadron physics with GeV photons at SPring-8/LEPS II
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
Advanced GAmma Tracking Array
Test Beam at IHEP,CAS ZHANG Liang sheng, Test Beam Group Introduction BEPC/BES Ⅱ will be upgraded as BEPC Ⅱ / BES Ⅲ, it is necessary to do beam test for.
Ion Beam Analysis techniques:
Studying the  p-process at ATLAS Catherine M. Deibel Joint Institute for Nuclear Astrophysics Michigan State University Physics Division Argonne National.
Detecting Giant Monopole Resonances Peter Nguyen Advisors: Dr. Youngblood, Dr. Lui Texas A&M University Energy Loss Identifying The Particles Discovered.
GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS.
Transfer reactions Resonant Elastic scattering Inelastic scattering: GR.
GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS.
Roberto Francisco Pérez Benito On behalf the HERMES Collaboration European Graduate School Lecture Week on Hadron Physics Jyväskylä, Aug 25-29, 2008 HERMES.
Detecting Giant Monopole Resonances Peter Nguyen Advisors: Dr. Youngblood, Dr. Lui Texas A&M University.
Proton polarization measurements in π° photo-production --On behalf of the Jefferson Lab Hall C GEp-III and GEp-2γ collaboration Wei Luo Lanzhou University.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
Cross section measurements at LNL M.Mezzetto (INFN-Pd) on behalf of INFN-LNL: M. Cinausero, G. De Angelis,G. Prete.
Applications of neutron spectrometry Neutron sources: 1) Reactors 2) Usage of reactions 3) Spallation sources Neutron show: 1) Where atoms are (structure)
New methods to measure the cross sections of 12 C+ 12 C fusion reaction Xiao Fang Department of Physics University of Notre Dame.
Polarimetry of Proton Beams at RHIC A.Bazilevsky Summer Students Lectures June 17, 2010.
Laura Francalanza Collaborazione EXOCHIM INFN Sezione di Catania - LNS.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1 Nuclear Reactions Sample.
Rosen07 Two-Photon Exchange Status Update James Johnson Northwestern University & Argonne National Lab For the Rosen07 Collaboration.
Development of the neutron counters for the Spin dipole resonance Kazuhiro Ishikawa.
Digital analysis of scintillator pulses generated by high-energy neutrons. Jan Novák, Mitja Majerle, Pavel Bém, Z. Matěj 1, František Cvachovec 2, 1 Faculty.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Yury Gurchin June 2011 MEASUREMENT OF THE CROSS-SECTION IN DP-ELASTIC SCATTERING AT THE ENERGIES OF 500 AND 880 MEV AT NUCLOTRON.
ACTAR meeting - Dec 10th 2008Hervé Savajols (GANIL) Tracking Algorithms Hervé Savajols & Thomas Roger (GANIL) Wolfgang Mittig (MSU) …
Where next (with HDU)? Q-value mass. excitation energies. Angular distributions of recoils l -value spectroscopic information.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
TENSOR AND VECTOR ANALYZING POWERS OF d↑ d→pT and d↑ d→pX REACTIONS AT 270 MEV T.A.Vasiliev 1†, T.Saito 2, V.P.Ladygin 1, M.Hatano 2, A.Yu.Isupov 1, M.Janek.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Study of Electromagnetic Interactions of Light Ions in the Framework of the IHEP Ion Program at U70 Serguei Sadovsky, IHEP, Protvino EMIN-2009, Moscow,
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
ЭКСПЕРИМЕНТ R3B РЕАКЦИИ С РЕЛЯТИВИСТКИМИ РАДИОАКТИВНЫМИ ПУЧКАМИ НА УСКОРИТЕЛЬНОМ КОМПЛЕКСЕ FAIR (GSI, DARMSTADT, GERMANY) Е.М. МАЕВ.
Dipole radiation during collisions LL2 Section 68.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Study of repulsive nature of optical potential for high energy 12 C+ 12 C elastic scattering (Effect of the tensor and three-body interactions) Gaolong.
Narrow plasma & electron injection simulations for the AWAKE experiment A. Petrenko, K. Lotov, October 11,
Ancillary/Complementary detectors for the AD at LNL.
Timelike Compton Scattering at JLab
Dipole Magnetic Field Effect on the Antiproton Beam
Interaction Region and Detector
The Medium and High resolution mass separators for SPES facility
Efficient transfer reaction method with RI BEams
Jose Javier Valiente Dobón LNL (INFN)
Exclusive w/h production in pp collisions at Ekin=3.5 GeV with HADES
Giant Monopole Resonance
MAGIX Detectors Overview
Kaons Propagation Through Nuclei
Peripheral collisions Hans-Jürgen Wollersheim
PHL424: Semi-classical reaction theory
Vamos + Exogam Spectrometer
Beam Spin Asymmetry Measurements from Deeply Virtual Meson Production
Nadia Fomin University of Virginia
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
1. Introduction Secondary Heavy charged particle (fragment) production
Study of the resonance states in 27P by using
The Hadrontherapy Geant4 advanced example
Hour 38 Scattering Cross Sections
PHL424: Rutherford scattering discovery of nucleus
PHL424: Semi-classical reaction theory
Nuclear structure of 8B studied by proton resonance scatterings on 7Be
Status and perspectives of the LNS-FRIBS facility
What is the CNI experiment
Detection of neutrons in CB and TAPS
Presentation transcript:

Design study for a Helios-like spectrometer at LNS D. Santonocito – LNS User Meeting – 9/5/2017

Design study for a Helios-like spectrometer at LNS Study of nuclear structure direct reactions Elastic Scattering (sensitive to the density distribution of p,n) Inelastic Scattering (collectivity, B(E2),B(E3)) Single nucleon transfer reactions (single particle states, astrophysical process) Transfer of nucleons pair (pair correlations) Inverse kinematics: measurement of the light reaction partner Typical experimental problems: Low energy particles - identification Strong angular dependence Kinematical compression at large angles Low intensity beams (detection efficiency)

Helical orbit Spectrometer (HELIOS- Argonne ) : how it works ? Studio di fattibilità per uno spettrometro per particelle cariche leggere Helical orbit Spectrometer (HELIOS- Argonne ) : how it works ? Target inside the solenoid along the magnetic axis Light charged particles emitted from the target follow, in the magnetic field, helicoidal trajectories and are focused back on the magnetic axis: Tcyc = 2m/Bqe z = vparTcyc Detection through a position sensitive Si array. What we need to measure: Impact point z (Dx = 1 mm) Elab ToF (~ 1 ns) In an homogeneous field ToF = Tcycl Derived quantities: Particle identification m/q Ecm Qcm 2 m/q = (eB/2p) Tflight Ecm = Elab + 1/2mVcm –VcmeqBz/2p Qcm = arccos(qeBz-2pmVcm/(2p√2mElab +m2Vcm –mVcmqeBz/p) Schema HELIOS

Features of an helical orbit spectrometer From (Elab- Qlab) to (Elab – z) Particles identification Tcycl = 65.6 * A/qB (ns) (con A in amu, B in Tesla) B= 2 Tesla B = 3 Tesla Protoni 32.8 (ns) 21.9 (ns) d, Alfa2+ 65.6 (ns) 43.7 (ns) trizio 98.4 (ns) 65.6 (ns) Dimensions of the Solenoid Homogeneity of the field in the volume Size and shape of the detection array

Solenoid main features Parameters influencing the spectrometer acceptance : Magnetic field intensity (up to 5 Tesla) homogeneity (10-4) Radius (R) Lenght (L) Homogeneous field in the solenoid tipically restricted to a region with L ≈ 2R Max distance from the solenoid axis (cm) - protons Zimp of protons on solenoid axis ( B= 2T ) Max distance from the solenoid axis (cm) Zimp of protons on solenoid axis (cm) Emission Angle (deg) Emission angle (deg) LNS Solenoid dimensions: Radius=30 cm – Lenght = 200 cm

Shape of SOLE solenoid magnetic field per particelle cariche leggere Shape of SOLE solenoid magnetic field Sole in OPERA Field shape B=3T Z = 0 cross-section Shape of the field B=3T -100 -50 0 50 100 z (cm) 1 104 2 104 3 104 A. Calanna

Trajectories simulations in SOLE using OPERA Studio di fattibilità per uno spettrometro per particelle cariche leggere Trajectories simulations in SOLE using OPERA E= 2 MeV E= 6 MeV E= 2 MeV A. Calanna

Detector Array Effects: simulations HELIOS setup Si 1000 mm – 20 x 50 mm source posit.(0.5; 0; 0) cm A. Calanna

Preliminary results on spectrometer performances: simulations Studio di fattibilità per uno spettrometro per particelle cariche leggere Preliminary results on spectrometer performances: simulations Protons: E = 4 MeV, Q= 70° E = 4 MeV, Q= 70.5° Angolo ricostruito vs dimensione del beam spot A. Calanna

New Fragment separator Degrader Target where fragmentation occurs 2 - triplets 2 – doublets 2 - 70° dipoles 2 - 40° dipole courtesy A. Russo

Repositioning of SOLE solenoid in the CICLOPE area To build this line it is necessary to add Output Slit 2 – triplets 1- doublet 1 - 45° dipole CICLOPE Degrader Improvement in intensity: factor ≈ 4-5 with 100W factor ≈ 80 with 2 kW Target where fragmentation occurs courtesy A. Russo

Design study : next step Studio di fattibilità per uno spettrometro per particelle cariche leggere Design study : next step Detailed map of the magnetic field Simulations with the new map Test with a TANDEM beam and a limited detector array – elastic scattering Definition of the Silicon array (size – shape)

LNS Collaboration LNL Rosa Alba Giorgio Bellia Antonio Del Zoppo Alessia Di Pietro Pierpaolo Figuera Marcello Lattuada Concettina Maiolino Domenico Santonocito LNL Interest in this activity for the development of a new HELIOS-like spectrometer at LNL