by Caroline Kardeby, Knut Fälker, Elizabeth J

Slides:



Advertisements
Similar presentations
IL-18 Downregulates Collagen Production in Human Dermal Fibroblasts via the ERK Pathway  Hee Jung Kim, Seok Bean Song, Jung Min Choi, Kyung Moon Kim,
Advertisements

Volume 68, Issue 4, Pages (October 2005)
Vascular Endothelial–Cadherin Tyrosine Phosphorylation in Angiogenic and Quiescent Adult Tissues by Nathalie Lambeng, Yann Wallez, Christine Rampon, Francine.
by Miguel Vicente-Manzanares, Aranzazu Cruz-Adalia, Noa B
by Wei Zhang, and Robert W. Colman
Tissue-Specific Expression of Functional Platelet Factor XI Is Independent of Plasma Factor XI Expression by Chang-jun Hu, Frank A. Baglia, David C.B.
by Rosemary E. Smith, Vanshree Patel, Sandra D. Seatter, Maureen R
PRT , a novel Syk inhibitor, prevents heparin-induced thrombocytopenia and thrombosis in a transgenic mouse model by Michael P. Reilly, Uma Sinha,
by Hong Yin, Aleksandra Stojanovic, Nissim Hay, and Xiaoping Du
by Simon Stritt, Inga Birkholz, Sarah Beck, Simona Sorrentino, K
Upregulation of Cortactin Expression During the Maturation of Megakaryocytes by Xi Zhan, Christian C. Haudenschild, Yangson Ni, Elizabeth Smith, and Cai.
Recombinant factor VIIa restores aggregation of αIIbβ3-deficient platelets via tissue factor–independent fibrin generation by Ton Lisman, Jelle Adelmeijer,
A novel TNFR1-triggered apoptosis pathway mediated by class IA PI3Ks in neutrophils by Barbara Geering, Ursina Gurzeler, Elena Federzoni, Thomas Kaufmann,
Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cδ by Ingo.
by Fan Dong, and Andrew C. Larner
Agonist-induced aggregation of Chinese hamster ovary cells coexpressing the human receptors for fibrinogen (integrin αIIbβ3) and the platelet-activating.
by Zhengyan Wang, Tina M. Leisner, and Leslie V. Parise
by Yuhang Zhou, Shaji Abraham, Pierrette Andre, Leonard C
by Jun Chung, Xue-Qing Wang, Frederik P. Lindberg, and William A
Inhibition of collagen-induced platelet aggregation by anopheline antiplatelet protein, a saliva protein from a malaria vector mosquito by Shigeto Yoshida,
Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses by Caroline Lemieux, Ricardo Maliba, Judith.
Identification of FcγRIIa as the ITAM-bearing receptor mediating αIIbβ3 outside-in integrin signaling in human platelets by Brian Boylan, Cunji Gao, Vipul.
A role for the thiol isomerase protein ERP5 in platelet function
TEL-JAK2 constitutively activates the extracellular signal–regulated kinase (ERK), stress-activated protein/Jun kinase (SAPK/JNK), and p38 signaling pathways.
Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma by Brian F. Skinnider,
by Bruno Bernardi, Gianni F. Guidetti, Francesca Campus, Jill R
Β1 integrin−mediated signals are required for platelet granule secretion and hemostasis in mouse by Tobias Petzold, Raphael Ruppert, Dharmendra Pandey,
Impaired activation of platelets lacking protein kinase C-θ isoform
by Mi-Ae Kang, Su-Young Yun, and Jonghwa Won
Oxidized low-density lipoproteins induce rapid platelet activation and shape change through tyrosine kinase and Rho kinase–signaling pathways by Katie.
Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization, secondary mediators, and Rac by Alice Y. Pollitt, Beata Grygielska, Bertrand.
IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation by Melanie Antl, Marie-Luise von Brühl, Christina Eiglsperger,
Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival by Diana Starlets, Yael Gore, Inbal Binsky, Michal Haran, Nurit.
by Bindu Varghese, Adam Widman, James Do, Behnaz Taidi, Debra K
Platelet CD36 signaling through ERK5 promotes caspase-dependent procoagulant activity and fibrin deposition in vivo by Moua Yang, Andaleb Kholmukhamedov,
Rapid ubiquitination of Syk following GPVI activation in platelets
LPS induces CD40 gene expression through the activation of NF-κB and STAT-1α in macrophages and microglia by Hongwei Qin, Cynthia A. Wilson, Sun Jung Lee,
Ubiquitination and degradation of the thrombopoietin receptor c-Mpl
Diverging signaling events control the pathway of GPVI down-regulation in vivo by Tamer Rabie, David Varga-Szabo, Markus Bender, Rastislav Pozgaj, Francois.
The structure of the GPIb–filamin A complex
RGS10 shapes the hemostatic response to injury through its differential effects on intracellular signaling by platelet agonists by Peisong Ma, Shuchi Gupta,
Stimulation of the B-cell receptor activates the JAK2/STAT3 signaling pathway in chronic lymphocytic leukemia cells by Uri Rozovski, Ji Yuan Wu, David.
Dasatinib enhances megakaryocyte differentiation but inhibits platelet formation by Alexandra Mazharian, Cedric Ghevaert, Lin Zhang, Steffen Massberg,
In-depth PtdIns(3,4,5)P3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function by Tom N. Durrant, James L. Hutchinson,
Dichloroacetate, an inhibitor of pyruvate dehydrogenase kinases, inhibits platelet aggregation and arterial thrombosis by Manasa K. Nayak, Nirav Dhanesha,
Volume 65, Issue 6, Pages (June 2004)
Platelet-specific deletion of SNAP23 ablates granule secretion, substantially inhibiting arterial and venous thrombosis in mice by Christopher M. Williams,
Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling by Jeff S. Isenberg, Martin J.
Volume 68, Issue 4, Pages (October 2005)
Platelet heterogeneity in activation-induced glycoprotein shedding: functional effects by Constance C. F. M. J. Baaten, Frauke Swieringa, Tomasz Misztal,
Platelet MEKK3 regulates arterial thrombosis and myocardial infarct expansion in mice by Xuemei Fan, Conghui Wang, Panlai Shi, Wen Gao, Jianmin Gu, Yan.
Severe platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib by Alexander P. Bye, Amanda J. Unsworth,
The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation by Maryam F. Salamah, Divyashree Ravishankar,
by Ludovic Durrieu, Alamelu Bharadwaj, and David M. Waisman
ELMO1 deficiency enhances platelet function
Soluble GPVI is elevated in injured patients: shedding is mediated by fibrin activation of GPVI by Samantha J. Montague, Céline Delierneux, Christelle.
IL-18 Downregulates Collagen Production in Human Dermal Fibroblasts via the ERK Pathway  Hee Jung Kim, Seok Bean Song, Jung Min Choi, Kyung Moon Kim,
by Tadayuki Yago, Nan Zhang, Liang Zhao, Charles S
Volume 12, Issue 2, Pages (February 2000)
High CD123 levels enhance proliferation in response to IL-3, but reduce chemotaxis by downregulating CXCR4 expression by Nicole L. Wittwer, Gabriela Brumatti,
Volume 18, Issue 5, Pages (May 2005)
Calpain cleaves phospholipid flippase ATP8A1 during apoptosis in platelets by Weidong Jing, Mehmet Yabas, Angelika Bröer, Lucy Coupland, Elizabeth E. Gardiner,
Complement C5 but not C3 is expendable for tissue factor activation by cofactor-independent antiphospholipid antibodies by Nadine Müller-Calleja, Svenja.
Synthetic glycopolymers require GPIbα to induce full aggregation in murine and human platelets. Synthetic glycopolymers require GPIbα to induce full aggregation.
Inhibition of BCR activation by orthogonal inhibitors of SYK-AQL.
by Alyssa J. Moroi, Nicole M. Zwifelhofer, Matthew J. Riese, Debra K
Src kinases mediate TSP-1 inhibition of AC and PKA activity.
by Fabian C. Verbij, Nicoletta Sorvillo, Paul H. P
EGFR signaling and ADAM10 are required for N-cadherin processing.
by Dana S. Levy, Jason A. Kahana, and Rakesh Kumar
Presentation transcript:

Synthetic glycopolymers and natural fucoidans cause human platelet aggregation via PEAR1 and GPIbα by Caroline Kardeby, Knut Fälker, Elizabeth J. Haining, Maarten Criel, Madelene Lindkvist, Ruben Barroso, Peter Påhlsson, Liza U. Ljungberg, Mattias Tengdelius, G. Ed Rainger, Stephanie Watson, Johannes A. Eble, Marc F. Hoylaerts, Jonas Emsley, Peter Konradsson, Steve P. Watson, Yi Sun, and Magnus Grenegård BloodAdv Volume 3(3):275-287 February 12, 2019 © 2019 by The American Society of Hematology

Caroline Kardeby et al. Blood Adv 2019;3:275-287 © 2019 by The American Society of Hematology

Potency of synthetic glycopolymer–induced platelet aggregation is chain length dependent. Potency of synthetic glycopolymer–induced platelet aggregation is chain length dependent. (A) Isolated human and mouse platelet aggregation was measured in response to increasing molar concentrations of synthetic glycopolymers C329 and C13. Maximal increase in light transmission is presented as mean ± SEM (n = 3 experiments). Original traces of C329-induced (Bi) and C13-induced (Bii) human platelet aggregation and C329-induced (Ci) and C13-induced (Cii) mouse platelet aggregation. (D) Comparison of equal weight doses (30 µg/mL) of fucoidan from F vesiculosus (FV) and dextran sulfate (DS). Caroline Kardeby et al. Blood Adv 2019;3:275-287 © 2019 by The American Society of Hematology

Differences in human platelet tyrosine phosphorylation patterns comparing synthetic glycopolymers with rhodocytin, the snake venom agonist for CLEC-2. Differences in human platelet tyrosine phosphorylation patterns comparing synthetic glycopolymers with rhodocytin, the snake venom agonist for CLEC-2. (A) Isolated platelets were stimulated using the synthetic glycopolymer C329 (0.2 µM) or the CLEC-2 agonist rhodocytin (R; 50 nM) for 0.3, 1, 2, or 5 minutes. Control (Ctrl) sample was treated with an equal volume of H2O. Samples were analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, followed by western blot. Membranes were stained for tyrosine phosphorylation (4G10), p-Syk Tyr525/526, p-Syk Tyr348, and LAT Tyr191. (Bi) Phosphorylation patterns of p-Syk Tyr525/526, p-Syk Tyr348, and LAT Tyr191 were also compared for fucoidan from F vesiculosus (FV; 30 µg/mL). Quantification of Syk (Bii) and LAT (Biii) phosphorylation. Graphs represent data from 3 or 4 experiments, and densitometry quantification is presented in arbitrary units (a.u.) as mean ± SEM. Control = 1 a.u. *P < .05 vs 0.3-minute control. Caroline Kardeby et al. Blood Adv 2019;3:275-287 © 2019 by The American Society of Hematology

Functional consequence of Syk and Src inhibition in synthetic glycopolymer– and fucoidan-stimulated human platelets. Functional consequence of Syk and Src inhibition in synthetic glycopolymer– and fucoidan-stimulated human platelets. Isolated platelets were incubated for 5 minutes with the Syk inhibitor BAY 61-3606 (1 µM) or the Src inhibitor PP2 (10 µM). Samples were stimulated using the CLEC-2 agonist rhodocytin (R; 50 nM), dextran sulfate (DS; 30 µg/mL), fucoidan from F vesiculosus (FV; 30 µg/mL) or the glycopolymers C329 (0.2 µM) or C13 (4.1 µM) and analyzed by aggregometry. The GPVI agonist convulxin (CVX; 10 ng/mL) and thrombin (Thr; 0.1 U/mL) were used as controls. (A) Original traces. (B) Quantification of maximal aggregation. The inert analog PP3 (10 µM) was used as a control against PP2. Aggregation was measured as increases in light transmission. All samples contained <0.05% dimethyl sulfoxide. Representation of n = 3 experiments. *P < .05, treatment vs control. Caroline Kardeby et al. Blood Adv 2019;3:275-287 © 2019 by The American Society of Hematology

The PI3K/Akt signaling pathway is essential for human platelet activation by synthetic glycopolymers and natural fucoidan. The PI3K/Akt signaling pathway is essential for human platelet activation by synthetic glycopolymers and natural fucoidan. (Ai) Original traces of platelet aggregation by C329 (0.2 µM), C13 (4.1 µM), fucoidan from F vesiculosus (FV; 30 µg/mL), and dextran sulfate (DS; 30 µg/mL) in the presence or absence of wortmannin (1 µM) or LY294002 (50 µM). (Aii) Quantification of human platelet aggregation. PAR1 activating peptide SFLLRN (10 µM) and GPVI agonist convulxin (CVX; 10 ng/mL) were used as controls. All samples contained <0.05% dimethyl sulfoxide. Maximal increase in light transmission is presented as mean ± SEM (n = 3 or 4 experiments). *P < .05, PI3K inhibitors vs control. (B) Isolated platelets were stimulated using synthetic glycopolymer C329 (0.2 µM), FV (30 µg/mL), DS (30 µg/mL), or the CLEC-2 agonist rhodocytin (R; 50 nM). Control (Ctrl) sample was treated with an equal volume of H2O. Reactions were stopped at 0.3, 1, or 2 minutes, and samples were analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, followed by western blot. Graph represents n = 3 experiments; densitometry quantification is presented in arbitrary units (a.u.) as mean ± SEM. Control = 1 a.u. *P < .05, treatment vs 0.3-minute control. Caroline Kardeby et al. Blood Adv 2019;3:275-287 © 2019 by The American Society of Hematology

Synthetic glycopolymers and sulfated polysaccharides cause human platelet aggregation via PEAR1 by direct binding to EGF-like repeats 13 and 12 to 14 of PEAR1. Synthetic glycopolymers and sulfated polysaccharides cause human platelet aggregation via PEAR1 by direct binding to EGF-like repeats 13 and 12 to 14 of PEAR1. (A) Aliquots of platelet suspension were stimulated with convulxin (CVX; 10 ng/mL), rhodocytin (R; 50 nM), dextran sulfate (DS; 30 µg/mL), fucoidan from F vesiculosus (FV; 30 µg/mL), C329 (0.2 µM), or C13 (4.1 µM) for 20 seconds, after which immunoprecipitation for PEAR1 was performed. Samples were analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, followed by western blot. Membranes were probed with the pan tyrosine phosphorylation antibody 4G10. Control sample was treated with an equal volume of H2O instead of agonist. *P < .05, treatment vs control. (B) Aggregation was measured as the increase in light transmission using isolated platelets. Isolated platelets were incubated for 2 minutes with anti-PEAR1 antibody (0.3 µg/mL) or matching isotype control (0.3 µg/mL) and subsequently stimulated with C329, C13, FV, or DS. R was used as control. All samples contain <0.0002% sodium azide. (C) Isolated platelets were preincubated with anti-PEAR1 antibody (0.3 µg/mL) or corresponding isotype control (0.3 µg/mL) for 2 minutes. Samples were stimulated with DS, FV, C329, or C13 for 1 minute. Samples were analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, followed by western blot. Representation of n = 3 experiments. *P < .05, isotype vs PEAR1 antibody. (Di) Illustration of PEAR1 and schematic overview of the EGF-like repeats that were analyzed by AVEXIS. The red EGF-like repeat is number 13, which is sufficient to bind sulfated synthetic glycopolymers. (Dii) Detection of PEAR1–glycopolymer interaction by AVEXIS. SPs and NSPs were plate immobilized, acting as a bait for EGF-like repeats 1 to 12, 13, and 12 to 14. Absorbance for β-lactamase activity was measured at 485 nm. Data are mean ± SEM (n = 3 experiments). *P < .05, SPs vs NSPs. Caroline Kardeby et al. Blood Adv 2019;3:275-287 © 2019 by The American Society of Hematology

Mouse platelets deficient in PEAR1 (Pear1−/−) still aggregate to high concentrations of synthetic glycopolymers, whereas CLEC-2–deficient platelets (Clec1bfl/fl;PF4-Cre) do not. Mouse platelets deficient in PEAR1 (Pear1−/−) still aggregate to high concentrations of synthetic glycopolymers, whereas CLEC-2–deficient platelets (Clec1bfl/fl;PF4-Cre) do not. Murine platelets were analyzed for platelet aggregation upon stimulation by C329 and C13. (Ai) Original traces of PEAR1-deficient platelets compared with wild-type platelets stimulated with C329 (0.03 µM) and C13 (0.7 µM). (Aii) Quantification of maximal aggregation. Representation of 3 to 5 experiments. *P < .05, wild-type vs Pear1−/− mice. (Bi) Original traces of CLEC-2–deficient platelets compared with wild-type platelets stimulated by C329 (0.2 µM) and C13 (4.1 µM). (Bii) Quantification of maximal aggregation within 10 minutes. Collagen (10 µg/mL) was used as a control for Clec1bfl/fl;PF4-Cre platelet reactivity. Representation of 3 experiments. *P < .05, wild-type vs Clec1bfl/fl;PF4-Cre mice. Caroline Kardeby et al. Blood Adv 2019;3:275-287 © 2019 by The American Society of Hematology

Synthetic glycopolymers require GPIbα to induce full aggregation in murine and human platelets. Synthetic glycopolymers require GPIbα to induce full aggregation in murine and human platelets. (A) Detection of GPIbα–glycopolymer interaction by AVEXIS. SPs and NSPs were plate immobilized, acting as a bait for the full-length extracellular domain of GPIbα. CD200 was used as a negative control protein. Absorbance for β-lactamase activity was measured at 485 nm, presented as mean ± SEM (n = 3 experiments). *P < .05. (Bi) Human platelet aggregation. Platelet aliquots were treated with anti-GPIbα antibody SZ2 (0.3 µg/mL), HIP2 (0.3 µg/mL), or isotype control (0.3 µg/mL) for 2 minutes before stimulation by C329 or C13. (Bii) Quantification of maximal aggregation within 10 minutes. Thrombin was used as a control at 0.3 and 0.2 U/mL. Increase in light transmission is presented as mean ± SEM (n = 3 experiments). *P < .05. (Ci) Mouse platelet aggregation. Murine wild-type platelets and transgenic mouse platelets deficient in GPIbα extracellular domain (hIL4-Rα/GPIbα-Tg) were stimulated using synthetic glycopolymers C329 (0.2 µM) and C13 (4.1 µM). (Cii) Quantification of maximal increase in light transmission within 10 minutes. Collagen (10 µg/ml) was used as a control for platelet viability. *P < .05, wild-type vs hIL4-Rα/GPIbα-Tg mice. Caroline Kardeby et al. Blood Adv 2019;3:275-287 © 2019 by The American Society of Hematology