Figure 2 Distinct changes to immunoprofile in autoimmune thyroid disease (AITD) and multiple sclerosis (MS)‏ Distinct changes to immunoprofile in autoimmune.

Slides:



Advertisements
Similar presentations
Figure 2 ALSFRS-R changes (A) Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) slope after 6 months of treatment without (left)
Advertisements

Figure 3 B-cell amount and the frequency of various B-cell subtypes are differentially affected by FTY or DMF treatment B-cell amount and the frequency.
Figure 4 Correlation of age with [11C](R)-PK11195 binding in the normal-appearing white matter (NAWM) and thalami Correlation of age with [11C](R)-PK11195.
Figure 3 Classical complement pathway activity and disease severity (A) Association between high innate classical pathway (CP) activity and degree of muscle.
Figure Brain MRI of the patient throughout the disease course(A) Brain MRI at the time of cerebral toxoplasmosis diagnosis (a) and after 1 month of toxoplasmosis.
Figure 4 Relation of neuropsychological deficits and intrathecal immune cell subsets in GABAB receptor antibody–associated limbic encephalitis Relation.
Figure 5 Treatment with fingolimod raises the activation threshold of monocytes in MS Peripheral blood mononuclear cells from 8 healthy donors, 7 patients.
Figure 3 JCV index changes in JCV+ patients
Figure 3 Age, pretreatment, sex, and leukopenia do not influence CD19+ cell repopulation Age, pretreatment, sex, and leukopenia do not influence CD19+
Figure 2 The frequency of helper T cells (Th) within CD4+ population and TCRγδ within CD3+ cells is affected by FTY and DMF treatment The frequency of.
Figure 2 Brain-infiltrating immune cells mainly consist of CD8+ memory T cells Immunofluorescence staining of brain-infiltrating immune cells. Brain-infiltrating.
Figure 1 Effect of DMF therapy on T cell subsets
Figure 1 Cerebral MRI during the disease course Cerebral MRI with multiple cerebral supratentorial lesions during the disease course: periventricular lesions.
Figure 2 Alemtuzumab-induced changes in the dendritic cell compartment
Figure 1 The abundance of CD3+ T cells and their subtypes are significantly affected by FTY and DMF treatment The abundance of CD3+ T cells and their subtypes.
Figure 1 MOR103 sequential-dose trial flowchart of study population with multiple sclerosis aPatients received 2 doses of study drug before trial withdrawal.
Figure 1 8-Iso-PGF2α levels in CSF of patients with MS and controlsCSF 8-iso-prostaglandin F2α (8-iso-PGF2α) levels were estimated using an ELISA. (A)
Figure Association of hippocampal subfield volumes to cognition by neopterin level, volumes, and cognition adjusted for age, education, race, sex, and.
Figure 1 Peripheral blood leukocyte subset counts during dimethyl fumarate treatmentComplete blood cell counts were obtained at baseline (n = 34) and at.
Figure 2. ROC curves for different group comparisons
Figure 2 JCV index JCV index (A) Fifty samples of natalizumab-treated patients with multiple sclerosis were assessed twice for their anti-JCV antibody.
Figure 2 CD4+ and CD8+ T cells accumulate in the CSF in GABAB receptor antibody–associated LE CD4+ and CD8+ T cells accumulate in the CSF in GABAB receptor.
Figure 1 Schematic overview of flow cytometry Schematic overview on the analysis of peripheral immune cells by flow cytometry. Schematic overview of flow.
Figure 1 Evolution of blood cell counts during 18-month treatment and follow-up (A) Mean white blood cell count, (B) mean lymphocyte count, (C) mean eosinophil.
Figure 4 Relative abundances of the order Clostridiales and its family members are differentially changed by therapy Relative abundances of the order Clostridiales.
Figure 1 The human adaptive immune profile in multiple sclerosis (MS)‏
Figure 5 Increased B cell-activating factor (BAFF) levels are shared between immunomodulatory treatments Increased B cell-activating factor (BAFF) levels.
Figure 1 JCV serostatus JCV serostatus (A) Serostatus of 1,921 natalizumab-treated patients with multiple sclerosis, with JCV− patients shown in black.
Figure 5 Pairwise correlations between selected patient-reported outcomes and performance tests in patients with MS (A) The number of pairwise correlations.
Figure 3 Longitudinal performance of 2 MS–cohabitant participant pairs on Ishihara color testing Both response speed and response accuracy are provided.
Figure 3 Comparisons of quantitative spinal cord MRI measures and brain atrophy in RIS vs. healthy controls (adjusted for age and sex)‏ Comparisons of.
Figure 1 Phenotype and functional properties of B cells in MS and HCs at baseline Phenotype and functional properties of B cells in MS and HCs at baseline.
Figure 1 Proportions of the major B-cell subsets in DMF-treated patients Proportions of the major B-cell subsets in DMF-treated patients B cells were collected.
Figure 4 Shared and unique immune changes induced by multiple sclerosis (MS) immunomodulatory treatments Shared and unique immune changes induced by multiple.
Figure 1 Annual trend in specimen type submitted as first sample for aquaporin-4 immunoglobulin G testing (serum only vs CSF only vs both) from 101,065.
Figure 2 Reduced frequency of central memory CD4 T cells in patients with PML Reduced frequency of central memory CD4 T cells (CD4Tcm) (p < ), naive.
Figure 2 Flu immunization–induced changes in the proportions and absolute numbers of B cells and their relevant subpopulations Flu immunization–induced.
Figure 1 B cells and plasma cells accumulate in the CSF in GABAB receptor antibody–associated LE B cells and plasma cells accumulate in the CSF in GABAB.
Figure 1 Examples illustrating gating strategy for fluorescence-activated cell sorting (FACS)‏ Examples illustrating gating strategy for fluorescence-activated.
Figure 1 Association between serum levels of IL-18 and hippocampal volume in patients with schizophrenia Scatter plots show a positive correlation between.
Figure 3 Multiple sclerosis (MS) immunomodulatory treatments interferon-β (IFNB) and fingolimod (FTY720) result in global perturbation of the immune system.
Figure 2 Peripheral blood lymphocyte subset counts during dimethyl fumarate treatment(A) Lymphocyte subsets were obtained at baseline (n = 21) and at month.
Figure 1 BG-12 treatment reduced total circulating B cells and had variable effects on memory B cells BG-12 treatment reduced total circulating B cells.
Figure 1 Examination of MuSK antibody levels and B-cell subsetsFlow cytometric analysis (n = 13) using standardized Human Immunology Project Consortium.
Figure 1 Patterns of study retention The proportion of individuals actively participating in the study is displayed over the course of the study. Patterns.
Figure 1 Histamine flare in patients and controls
Figure 3 Pedigrees of 3 multiplex families with NLRP3 mutations and MS The patient numbers refer to the patients listed in table 1. Pedigrees of 3 multiplex.
Figure 2 CD4+ T-cell subsets fluorescence-activated cell sorting analysis in peripheral blood mononuclear cells of patients with multiple sclerosis treated.
Figure 1 Levels of miR-150 are elevated in patients with multiple sclerosis (MS) and patients with clinically isolated syndrome (CIS) who convert to MS.
Figure 1 CD52 expression on innate myeloid and lymphoid cell subsets
Figure 2 Correlation between wGRS and age at onset The figure shows the correlation between weighted genetic risk score (wGRS) and age at onset in all.
Figure 1 Distinct cognitive performers present differences in the cell populations of the adaptive immune systemThe profile (cell counts per mL of blood)
Figure 4. The N:M ratio is significantly increased in patients with ALS and correlates with disease progression The N:M ratio is significantly increased.
Figure 2 Repopulation of CD19+ cells in low and high BSA patients and calculation of the BSA Repopulation of CD19+ cells in low and high BSA patients and.
Figure 3 Flu immunization–induced changes in the proportions and absolute numbers of RORγt-expressing CD4+ and CD8+ T cells Flu immunization–induced changes.
Figure 1 Flu immunization–induced changes in the proportions and absolute numbers of T cells and their relevant subpopulations Flu immunization–induced.
Figure Avidity of IgG specific for influenza A and B following flu vaccinationAvidity of immunoglobulin (Ig) G specific for influenza A and B before and.
Figure 2 Natalizumab increases expression of proinflammatory genes and cytokines by CD49d+ memory CD4 cells Natalizumab increases expression of proinflammatory.
Figure 2 CD56bright natural killer (NK) cell counts in daclizumab high-yield process (DAC HYP)-treated patientsData are medians with 25th and 75th percentiles.
Figure 1 Peripheral blood lymphocyte counts during dose titrationB-lymphocyte (CD19+; A) and total lymphocyte (CD45+; B) counts (cells/µL) in peripheral.
Figure 3 Impact of short-term MP administration on frequency and phenotype of slanDCs and monocytes in the blood of patients with MSThe percentages of.
Figure 2 Assessment of fluctuation in fatigue scores using environmental data The relationship between fatigue (as measured by the Modified Fatigue Impact.
Figure 1. MBP-specific IFN-γ+ but not IL-17+ frequencies are significantly different between patients with MS and HCs MBP-specific IFN-γ+ but not IL-17+
Figure 1 Classical pathway and lectin pathway activity in patients with multifocal motor neuropathy and controls Classical pathway (CP) activity (A) and.
Gitanjali Das et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e453
Figure 3 Alemtuzumab-induced changes in monocytes
Figure 4 Cell count of selective immune cell subpopulations during alemtuzumab Cell count of selective immune cell subpopulations during alemtuzumab Absolute.
Figure 2. Percentage of CD16− monocytes in the blood is reduced during disease progression Percentage of CD16− monocytes in the blood is reduced during.
Figure (A and B) Effect of canakinumab in muscle strength measured in each patient as mean bilateral GF (A) and TMS (B) during the mean study period of.
Figure 4 Longitudinal analysis of peripheral immune cell composition Frequency of naive, central memory (Tcm), and effector memory (Tem) CD4 T cells over.
Presentation transcript:

Figure 2 Distinct changes to immunoprofile in autoimmune thyroid disease (AITD) and multiple sclerosis (MS)‏ Distinct changes to immunoprofile in autoimmune thyroid disease (AITD) and multiple sclerosis (MS) A linear regression with covariates age, sex, and disease duration was applied to the immune profiling results of patients with AITD and untreated patients with MS vs healthy controls, and—within patients—untreated MS vs AITD. Significant differences in the peripheral immune system of untreated patients with MS compared to controls were restricted to (A) effector memory CD8+ cells and (B) memory B cells. Significant differences compared to controls observed for patients with AITD but not patients with MS include altered proportions of (C) recent thymic emigrant CD4+, (D) Th17, (E) transitional B cells, and (F) class-switched B cells. Median with boxes indicate 25th and 75th percentile and whiskers indicate 1.5 × interquartile range. James Dooley et al. Neurol Neuroimmunol Neuroinflamm 2016;3:e240 © 2016 American Academy of Neurology