Siyuan Wang, Ned S. Wingreen  Biophysical Journal 

Slides:



Advertisements
Similar presentations
Inhibitor Binding Increases the Mechanical Stability of Staphylococcal Nuclease Chien-Chung Wang, Tian-Yow Tsong, Yau-Heiu Hsu, Piotr E. Marszalek Biophysical.
Advertisements

Tryptophan-Lipid Interactions in Membrane Protein Folding Probed by Ultraviolet Resonance Raman and Fluorescence Spectroscopy Katheryn M. Sanchez, Guipeun.
Molecular Model of a Cell Plasma Membrane With an Asymmetric Multicomponent Composition: Water Permeation and Ion Effects Robert Vácha, Max L. Berkowitz,
A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics Dmitry A. Fedosov, Bruce Caswell, George Em Karniadakis Biophysical Journal.
Thermal Fluctuations of Red Blood Cell Membrane via a Constant-Area Particle- Dynamics Model Gianluca Marcelli, Kim H. Parker, C. Peter Winlove Biophysical.
Cytoskeletal Polymer Networks: Viscoelastic Properties are Determined by the Microscopic Interaction Potential of Cross-links O. Lieleg, K.M. Schmoller,
Lever-Arm Mechanics of Processive Myosins Yujie Sun, Yale E. Goldman Biophysical Journal Volume 101, Issue 1, Pages 1-11 (July 2011) DOI: /j.bpj
Cell Traction Forces Direct Fibronectin Matrix Assembly Christopher A. Lemmon, Christopher S. Chen, Lewis H. Romer Biophysical Journal Volume 96, Issue.
Quantifying the Rheological and Hemodynamic Characteristics of Sickle Cell Anemia Huan Lei, George Em Karniadakis Biophysical Journal Volume 102, Issue.
Nonlinear Poisson Equation for Heterogeneous Media Langhua Hu, Guo-Wei Wei Biophysical Journal Volume 103, Issue 4, Pages (August 2012) DOI: /j.bpj
Volume 107, Issue 9, Pages (November 2014)
Coarse-Grained Model of SNARE-Mediated Docking
Yinghao Wu, Barry Honig, Avinoam Ben-Shaul  Biophysical Journal 
Volume 111, Issue 7, Pages (October 2016)
Dejun Lin, Alan Grossfield  Biophysical Journal 
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Diffusion in a Fluid Membrane with a Flexible Cortical Cytoskeleton
Mechanisms of Capsid Assembly around a Polymer
Molecular Dynamics Simulation Analysis of Membrane Defects and Pore Propensity of Hemifusion Diaphragms  Manami Nishizawa, Kazuhisa Nishizawa  Biophysical.
Vincent VanBuren, Lynne Cassimeris, David J. Odde  Biophysical Journal 
Volume 88, Issue 5, Pages (May 2005)
Dynamics of Active Semiflexible Polymers
Volume 106, Issue 11, Pages (June 2014)
Volume 107, Issue 11, Pages (December 2014)
Morphology of the Lamellipodium and Organization of Actin Filaments at the Leading Edge of Crawling Cells  Erdinç Atilgan, Denis Wirtz, Sean X. Sun  Biophysical.
Composition Fluctuations in Lipid Bilayers
One-Dimensional Brownian Motion of Charged Nanoparticles along Microtubules: A Model System for Weak Binding Interactions  Itsushi Minoura, Eisaku Katayama,
Ameneh Maghsoodi, Anupam Chatterjee, Ioan Andricioaei, Noel C. Perkins 
MunJu Kim, Katarzyna A. Rejniak  Biophysical Journal 
Physical Properties of Polymorphic Yeast Prion Amyloid Fibers
Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes  Jens Ehrig, Eugene P. Petrov, Petra Schwille 
Felix Campelo, Harvey T. McMahon, Michael M. Kozlov 
Volume 114, Issue 4, Pages (February 2018)
Cholesterol Depletion Mimics the Effect of Cytoskeletal Destabilization on Membrane Dynamics of the Serotonin1A Receptor: A zFCS Study  Sourav Ganguly,
Volume 110, Issue 11, Pages (June 2016)
Modulating Vesicle Adhesion by Electric Fields
Thermal Memory in Self-Assembled Collagen Fibril Networks
Cell Flexibility Affects the Alignment of Model Myxobacteria
Dmitry A. Fedosov, Bruce Caswell, George Em Karniadakis 
A Molecular-Mechanical Model of the Microtubule
Volume 102, Issue 2, Pages (January 2012)
Volume 96, Issue 6, Pages (March 2009)
Volume 100, Issue 7, Pages (April 2011)
Volume 94, Issue 11, Pages L81-L83 (June 2008)
Imre M. Jánosi, Denis Chrétien, Henrik Flyvbjerg  Biophysical Journal 
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Volume 106, Issue 11, Pages (June 2014)
Alexander Peyser, Dirk Gillespie, Roland Roth, Wolfgang Nonner 
Comparative Studies of Microtubule Mechanics with Two Competing Models Suggest Functional Roles of Alternative Tubulin Lateral Interactions  Zhanghan.
Volume 88, Issue 5, Pages (May 2005)
Volume 108, Issue 10, Pages (May 2015)
Mechanical Control of Bacterial Cell Shape
Phase Behavior of DNA in the Presence of DNA-Binding Proteins
Volume 100, Issue 11, Pages (June 2011)
A Computational Model for the Electrostatic Sequestration of PI(4,5)P2 by Membrane- Adsorbed Basic Peptides  Jiyao Wang, Alok Gambhir, Stuart McLaughlin,
Dynamics of Active Semiflexible Polymers
Steven S. Andrews, Adam P. Arkin  Biophysical Journal 
Dynamics of Myosin-V Processivity
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
Nevra Ozer, Celia A. Schiffer, Turkan Haliloglu  Biophysical Journal 
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers  Semen Yesylevskyy, Siewert-Jan.
Anomalous Flexural Behaviors of Microtubules
Modeling of Mitochondrial Donut Formation
Enrique M. De La Cruz, Jean-Louis Martiel, Laurent Blanchoin 
Modeling Membrane Deformations and Lipid Demixing upon Protein-Membrane Interaction: The BAR Dimer Adsorption  George Khelashvili, Daniel Harries, Harel.
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
Yinghao Wu, Barry Honig, Avinoam Ben-Shaul  Biophysical Journal 
Ai Kia Yip, Pei Huang, Keng-Hwee Chiam  Biophysical Journal 
Dmitry A. Fedosov, Bruce Caswell, George Em Karniadakis 
Presentation transcript:

Cell Shape Can Mediate the Spatial Organization of the Bacterial Cytoskeleton  Siyuan Wang, Ned S. Wingreen  Biophysical Journal  Volume 104, Issue 3, Pages 541-552 (February 2013) DOI: 10.1016/j.bpj.2012.12.027 Copyright © 2013 Biophysical Society Terms and Conditions

Figure 1 Bacterial cytoskeletal polymers. (A) Various orientations adopted by bacterial cytoskeleton components. (B) Schematic illustration of the polymer-membrane model. Biophysical Journal 2013 104, 541-552DOI: (10.1016/j.bpj.2012.12.027) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 2 Polymer-membrane energies and conformations. (A–D) Ground-state polymer bending energy (Ep), membrane energy (Em), combined energy (E), and energy increment per monomer (ΔE) as functions of polymer length N (energies in units of the thermal energy kT). (E and F) Membrane and polymer conformations for polymers of length N = 9 and 19 oriented along the x axis. (G and H) Three-dimensional membrane conformations for polymers of length N = 9 and 19 from panels E and F. (Note expanded scale normal to the membrane.) Parameters are: membrane bending modulus K = 28 kT; membrane-pinning modulus λ = 0.28 kT/nm4; monomer diameter d = 4 nm; polymer bending modulus B = 6.07 × 103 kT⋅ nm; and polymer intrinsic curvature C0 = 0.01 nm−1. Biophysical Journal 2013 104, 541-552DOI: (10.1016/j.bpj.2012.12.027) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 3 Ground-state polymer length. (A) Total system energy per monomer εtot (including monomer-monomer interaction energy εint) as a function of polymer length N for various pinning moduli. The minimum of each curve is the global ground state. (B) εtot versus N for various polymer intrinsic curvatures. (C) εtot versus N for various polymer bending moduli. (D) εtot versus N for various monomer-monomer interaction energies. Parameters as in Fig. 2 with εint = −15 kT, except as indicated. Biophysical Journal 2013 104, 541-552DOI: (10.1016/j.bpj.2012.12.027) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 4 Polymer length for nonequilibrium growth conditions. (A) System free-energy increment ΔG for monomer addition versus polymer length N for different pinning moduli, with C0 = 0.02 nm−1. The point of intersection of each energy increment curve with ΔG = 0 (black line) indicates where polymer growth stops being energetically favorable. (B) ΔG versus N for various intrinsic polymer curvatures, with λ = 2.8 × 10−6 kT/nm4. (C) ΔG versus N for various polymer bending moduli, with C0 = 0.001 nm−1. (D) ΔG versus N for various polymerization energies, with λ = 2.8 × 10−6 kT/nm4. Parameters as in Fig. 2 with gpoly = −4.0 kT, except as indicated. Biophysical Journal 2013 104, 541-552DOI: (10.1016/j.bpj.2012.12.027) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 5 Preferred polymer orientation. (A) Energy difference between longitudinal (ϕ = 90°) and circumferential (ϕ = 0°) orientations as a function of length N for an FtsZ-like polymer, i.e., one with intrinsic curvature bigger than the circumferential curvature of the cell. (B) Energy versus FtsZ orientation for N = 35. (C) Blowup of panel B: thermal fluctuation of 1 kT (magenta lines) leads to an orientation fluctuation of <13°. (D) FtsZ orientation fluctuation (σϕ) versus polymer length. (E) Energy versus orientation for an MreB-like polymer, i.e., one with polymer intrinsic curvature less than the circumferential curvature and with a preferred twist. (F) Blowup of panel E: thermal fluctuation of 1 kT (magenta lines) leads to an orientation fluctuation of <3°. (G) MreB orientation fluctuation versus polymer length. (H) Preferred MreB orientation versus cell radius. Parameters in panels A–D are the same as in Fig. 2, except C0 = 1/R + 0.01 nm−1, with R = 350 nm. Parameters in panels E–H are K = 28 kT, λ = 0.28 kT/nm4, d = 5.1 nm, B = 3.79 × 106 kT · nm, R = 400 nm, C0 = 2.31 × 10−3 nm−1, torsional rigidity of the polymer τ = 2.54 × 106 kT · nm, and polymer intrinsic twist per unit length ω0 = −6.62 × 10−4 nm−1. Biophysical Journal 2013 104, 541-552DOI: (10.1016/j.bpj.2012.12.027) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 6 Polymer-polymer interaction. (A) Schematic illustration of two well-separated FtsZ-like polymers and two adjacent FtsZ-like polymers. (B) Energy difference between the two configurations, E0 for adjacent polymers and E∞ for well-separated polymers, as a function of polymer length N. Parameters as in Fig. 2, except as indicated. Biophysical Journal 2013 104, 541-552DOI: (10.1016/j.bpj.2012.12.027) Copyright © 2013 Biophysical Society Terms and Conditions