Trends for major ions at Russian EMEP stations for period 2002 – 2012

Slides:



Advertisements
Similar presentations
Daily gradients of linear fit Model mean gradients (absolute values), CMIP5 models, historical run (1/1/ /12/2005) Only uses 10 models, i.e. omits.
Advertisements

VERIFICATION Highligths by WG5. 9° General MeetingAthens September Working package/Task on “standardization” The “core” Continuous parameters: T2m,
Office of Research and Development National Exposure Research Laboratory, Atmospheric Modeling and Analysis Division Changes in U.S. Regional-Scale Air.
Trend analysis: considerations for water quality management Sylvia R. Esterby Mathematics, Statistics and Physics, University of British Columbia Okanagan.
Jill Grenon, Terry Svalberg, Ted Porwoll, Mark Story Bridger-Teton NF Analysis of Lake, Bulk, NADP, and IMPROVE N and S data.
Climate Change Impacts on the Water Cycle Emmanouil Anagnostou Department of Civil & Environmental Engineering Environmental Engineering Program UCONN.
Andrea Toreti 1,2, Franco Desiato 1, Guido Fioravanti 1, Walter Perconti 1 1 APAT – Climate and Applied Meteorology Unit 2 University of Bern
Taupo, Biometrics 2009 Introduction to Quantile Regression David Baird VSN NZ, 40 McMahon Drive, Christchurch, New Zealand
 Similar picture from MODIS and MISR aerosol optical depth (AOD)  Both biomass and dust emissions in the Sahel during the winter season  Emissions.
Extra Discussion about Arctic 9/15/ Sources:
Arctic Land Surface Hydrology: Moving Towards a Synthesis Global Datasets.
FORECASTING. Types of Forecasts Qualitative Time Series Causal Relationships Simulation.
Demand Management and Forecasting. Types of Forecasts Qualitative Time Series Causal Relationships Simulation.
& : Maryland Weather Service Report, Vol. 2, pp & : US Historical Climatology Network. Baltimore WSO.
Saiful Islam Comparison of PRECIS results with Ground Base Observations in Bangladesh Saiful Islam Bangladesh University of Engineering and Technology.
Tahiti, Darwin, and pressure oscillations. SOI = Tahiti - Darwin (normalized)
Trend analysis: methodology
Trend analysis for HMs and POPs Applications I. Ilyin, EMEP / MSC-East.
Raffle #1. Raffle #2 Raffle #3 Raffle #4 Raffle #5 Sports radio stations numbered 220 in The number of sports radio stations has since increased.
Session 1. Numeracy lesson and differentiation Content Environment Process Product.
Preliminary Results California Max. and Min. Temperature Trends from Northern and Southern California Max. and Min. Temperature Trends from.
COSMO General Meeting – Moscow Sept 2010 Some results from operational verification in Italy Angela Celozzi - Federico Grazzini Massimo Milelli -
Trends in the Wet and Dry Deposition of Nitrogen and Sulfur Species
SEASONAL COMMON PLOT SCORES A DRIANO R ASPANTI P ERFORMANCE DIAGRAM BY M.S T ESINI Sibiu - Cosmo General Meeting 2-5 September 2013.
We carried out the QPF verification of the three model versions (COSMO-I7, COSMO-7, COSMO-EU) with the following specifications: From January 2006 till.
Long-term changes in frequencies of wind directions on the western coast of Estonia Jaak Jaagus Institute of Geography, University of Tartu Second International.
Seasonal variability of UTLS hydrocarbons observed from ACE and comparisons with WACCM Mijeong Park, William J. Randel, Louisa K. Emmons, and Douglas E.
Sulfate Ion Wet Deposition
Ammonium Ion Wet Deposition
Federal Departement of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Revisiting Swiss temperature trends * Paulo.
Oxidation Numbers The oxidation number of an atom in an element is zero. E.g. Mg in Mg, O in O 2.
Trends and Variability of Storminess in the NE Atlantic-European region, Xiaolan L. Wang, Francis, W. Zwiers, Val R. Swail, and Yang Feng Climate.
Arno Graff Susan Klose UBA-II 4.2 – Air Quality Assessment Some Aspects on Air Quality in Germany related to SOER 14th EIONET Meeting, Warsaw,
Historical Changes in Seasonal Freeze and Thaw Depths in Russia Oliver W. Frauenfeld, Tingjun Zhang, Roger G. Barry, and David Gilichinsky SEARCH OSM.
Air Quality trend analyses under EMEP/TFMM and link to EEA work Augustin COLETTE (INERIS), Chair of the TFMM/CLRTAP TFMM National Experts, CCC, MSC-E,
Orographic Precipitation Sacramento California Truckee Ranger Station Reno Nevada.
1. Null Hypotheses for n-way ANOVA Tree cover/grass (C3,C4) does not have significant effect on partial r If p < 0.05, tree cover/grass (C3,C4) affects.
Latest results in the precipitation verification over Northern Italy Elena Oberto, Marco Turco, Paolo Bertolotto (*) ARPA Piemonte, Torino, Italy.
Variability of Arctic Cloudiness from Satellite and Surface Data Sets University of Washington Applied Physics Laboratory Polar Science Center Axel J.
29 th TF meeting of the ICP-Vegetation, March, 2016, Dubna, Russia ANALYSIS OF LONG-TERM TRENDS OF ATMOSPHERIC HEAVY METAL POLLUTION IN THE EMEP COUNTRIES.
ENVIRONMENTAL SCIENCE TEACHERS’ CONFERENCE ENVIRONMENTAL SCIENCE TEACHERS’ CONFERENCE, Borki Molo, Poland, 7-10 February 2007 Extreme Climatic and atmospheric.
Practical Solutions Analysing Continuous Data. 2 1)To produce the overall histogram you can use the options exactly as given. This results in the following.
1 Lecture Plan Factor models for spot electricity markets (modelling and predicting prices and price distributions). Part II. Building fundamental.
Pao-Shin Chu, Hanpei Zhang, Kristine Tofte
CCSM Working Group Meeting, February 2008
Chapter 17 Forecasting Demand for Services
C O L U M N G R A P h Session 1.
Statistics in WR: Lecture 12
Descriptive Statistics
Interim Report Objectives of the project
Time series graphs……. SMOOTHING.
Hypotension during induction of anaesthesia is neither a reliable nor a useful quality measure for comparison of anaesthetists’ performance  R.H. Epstein,
Erin Robinson, Alan Pinkert June, 2010
Trend assessment (A. V, 2.4.4) Identification of trends in pollutants
Evaluation of Gridded Snow Products Using CloudSat Snowfall Estimates
Verification Overview
Multi-model and Observed PM Trends
TFMM trend analysis: use of AirBase. Preliminary results
17th Task Force on Measurement and Modelling Meeting
Trend analysis of sulphur and nitrogen species in air and precipitation in Sweden Martin Ferm
30/06/2019 Trends in measured and modelled precipitation quality parameters in Croatia Sonja Vidič Meteorological and Hydrological Service.
The Nordic-Baltic co-operation on the EMEP Assessment
Trends in sulphur and nitrogen components
Wenche Aas, Hilde Fagerli, Svetlana Tsyro, Sverre Solberg
PM Trends PM10, PM2.5, PM10-PM2.5 (not possible in 90s)
Tropospheric Ozone Assessment Report (TOAR)
Summary: TFMM trends analysis
Seasonal common scores plots
based on EMEP/MSC-W model and EMEP monitoring data
Heavy Metal Case Study for the Netherlands
Presentation transcript:

Trends for major ions at Russian EMEP stations for period 2002 – 2012 Alisa Trifonova-Iakovleva

EMEP stations in RUSSIA

Time series for analysis Danki (2002-2012): - air concentration SO2, SO42-, NO3-,NH4+ - wet concentration SO42-, NO3-,NH4+ - wet deposition Janiskoski (2002-2012): - wet concentration Pinega (2002-2012):

Structure of trend analysis Average values (MAKESENS) - whole time series concentrations - season concentrations Raw data (R) - seasons concentrations - whole time series depositions - seasons depositions

Methods of analysis Mann-Kendall test, Sen’s slope for average values Outlier analysis, least square, quantile regression (incl. trends in upper quantiles) for raw data Comparison of results Significant Mann-Kendall test? YES NO Keep the result of Mann-Kendall test Significant Least Square or quantile regression? Lsq&q.r. in CI of results of Sen’s method? No significant trend Add information (majority of results) No trend (only 1 case)

Quantile regression Θ-QUANTILE REGRESSION min 𝑏𝜖𝑅 𝑡∈{𝑡: 𝑦 𝑡 ≥ 𝑥 𝑡 𝑏} θ 𝑦 𝑡 − 𝑥 𝑡 𝑏 + 𝑡∈{𝑡: 𝑦 𝑡 ≤ 𝑥 𝑡 𝑏} 1−θ 𝑦 𝑡 − 𝑥 𝑡 𝑏 MEDIAN REGRESSION Θ= 1 2 1 2 min 𝑏∈𝑅 𝑡 𝑦 𝑡 − 𝑥 𝑡 𝑏 Roger Koenker; Gilbert Bassett, Jr. “Regression Quantiles”, Econometrica, Vol. 46, No. 1. (Jan., 1978), pp. 33-50 Roger Koenker (2015). quantreg: Quantile Regression. R package version 5.11. http://CRAN.R-project.org/package=quantreg

Example of quantile regression

Results of upper quantile regression Majority of directions of upper quantiles trends similar to usual trend Very few other cases

DANKI air Average data Raw data Time series, ug S/m^3 Signific. Q Upper Quant LSq Quant.regr SO2 DJF * -0,04278 - -0,01461 SO2 MAM ** -0,02783 down -0,01289 -0,00365 SO2 JJA   -0,00603 -0,00297 SO2 SON 0,004476 SO2 YR -0,01113 -0,00731 SO4 DJF -0,02382 0,025568 SO4 MAM -0,02205 -0,02088 SO4 JJA 0,006235 0,008561 SO4 SON 0,008343 SO4 YR 0,004202 NH4 DJF + -0,02925 -0,0071 NH4 MAM -0,03582 -0,02604 -0,01826 NH4 JJA 0,001213 -0,01722 -0,01096 NH4 SON 0,010965 -0,01567 NH4 YR -0,01668 NO3 DJF -0,0079 up 0,026064 0,021915 NO3 MAM -0,01634 0,00365 NO3 JJA 0,009675 0,004456 NO3 SON 0,006174 NO3 YR 0,008635 0,008189 Average data Raw data

Outlier analysis Not easy to understand if the point is outlier Only several points for whole time series No significant effect on the result LSq 0,010 Quant.regr 0,011 Outliers 7 LSq\outl 0,009 \outl mg-N/l/year

ADDITION

Trends in upper quantiles No trend for MS, Lsq Upper quantiles decrease Increasing trend for MS, Lsq Upper quantiles increase

DANKI wet Time series Signific. Q Upper Q LSq Quant.regr SO4-S DJF   -0,04136 - SO4-S MAM -0,00787 -0,0301 -0,03653 SO4-S JJA -0,00169 down -0,03141 SO4-S SON 0,009076 -0,06575 SO4-S YEAR 0,000725 -0,01882 -0,00731 NO3-N DJF -0,02692 up 0,028307 NO3-N MAM -0,00682 NO3-N JJA 0,007924 0,018263 NO3-N SON 0,005486 0,009643 NO3-N YEAR 0,002773 NH4-N DJF + -0,04456 0,010421 0,01461 up? 0,033238 NH4-N MAM 0,001887 NH4-N JJA 0,009819 NH4-N SON -0,00638 -0,10227 -0,0694 NH4-N YEAR 0,003831 down-up

PINEGA wet Time series, mg/l Signific. Q Upper Q LSq Quant. regr SO4-S DJF   0,000872 down -0,02118 -0,01096 - SO4-S MAM -0,01347 -0,03901 -0,03653 SO4-S JJA -0,0083 up 0,045072 0,11688 SO4-S SON -0,00242 SO4-S YEAR -0,00491 -0,01596 -0,00731 NO3-N DJF ** 0,018151 0,020892 0,021915 0,046387 0,032873 NO3-N MAM 0,00354 NO3-N JJA * 0,011905 0,244718 0,01461 0,10227 0,04383 NO3-N SON 0,004643 0,018263 NO3-N YEAR 0,010867 0,01019 0,010958 0,036525 0,025568 NH4-N DJF 0,020199 0,069763 NH4-N MAM 0,020055 NH4-N JJA 0,015439 0,109575 0,040178 0,295853 0,124185 NH4-N SON 0,019002 0,08766 NH4-N YEAR 0,019741 0,01938 0,091313

JANISKOSKI wet Time series, mg/l Signific Q Upper Quantile LSq Quant.regr SO4-S DJF   -0,01738 - -0,02177 -0,01096 down -0,09643 -0,05844 SO4-S MAM -0,02172 -0,08766 SO4-S JJA 0,006364 up 0,036525 -0,11688 SO4-S SON -0,01181 -0,01132 -0,00731 -0,12784 -0,05479 SO4-S YEAR -0,0082 down-up -0,08985 -0,0767 NO3-N DJF -3,5E-05 -0,01972 NO3-N MAM -0,00615 NO3-N JJA 0,002082 0,009862 NO3-N SON -0,00035 0,006209 0,003653 NO3-N YEAR -0,00092 0,010227 NH4-N DJF -0,01475 -0,02922 -0,09131 -0,02192 NH4-N MAM -0,00479 NH4-N JJA 0,001757 0,020454 0,010958 0,021915 NH4-N SON -0,00513 -0,01717 -0,10373 -0,02557 NH4-N YR -0,00355

PINEGA+OUTLIER ANALYSIS Time series, mg/l Signific. Q Upper Q LSq Quant. regr Outliers LSq\outl Quant.regr\outl SO4-S DJF   0,000872 down -0,02118 -0,01096 - 1 SO4-S MAM -0,01347 -0,03901 -0,03653 SO4-S JJA -0,0083 up 0,045072 0,036525 0,11688 2 0,109575 SO4-S SON -0,00242 7 6 SO4-S YEAR -0,00491 -0,01596 -0,00731 -0,01717 -0,07305 4 NO3-N DJF ** 0,018151 0,020892 0,021915 0,020089 0,046387 0,032873 NO3-N MAM 0,00354 NO3-N JJA * 0,011905 0,244718 0,01461 0,178973 0,10227 0,04383 0,06538 0,040178 NO3-N SON 0,004643 0,018263 0,010958 NO3-N YEAR 0,010867 0,01019 0,009204 0,025568 NH4-N DJF 0,020199 0,069763 3 0,045875 NH4-N MAM 0,020055 NH4-N JJA 0,015439 0,295853 0,124185 NH4-N SON 0,019002 0,014464 0,08766 0,050258 NH4-N YEAR 0,019741 0,01938 0,018628 0,091313

JANISKOSKI wet+OUTLIER Time series, mg/l Signific. Q Upper Q LSq Quant.regr Outliers LSq\outl Quant.regr\outl SO4-S DJF   -0,01738 - -0,02177 -0,01096 2 -0,01045 down -0,09643 -0,05844 SO4-S MAM -0,02172 4 -0,08766 3 -0,0767 SO4-S JJA 0,006364 up 0,036525 0,019724 -0,11688 SO4-S SON -0,01181 -0,01132 -0,00731 -0,01242 -0,12784 -0,05479 SO4-S YEAR -0,0082 down-up -0,08985 NO3-N DJF -3,5E-05 -0,01972 NO3-N MAM -0,00615 1 NO3-N JJA 0,002082 0,009862 0,003653 NO3-N SON -0,00035 0,006209 NO3-N YEAR -0,00092 0,010227 7 0,005114 -0,00986 NH4-N DJF -0,01475 -0,02922 -0,09131 -0,02192 -0,07378 -0,01826 NH4-N MAM -0,00479 NH4-N JJA 0,001757 0,020454 0,010958 0,019358 0,021915 6 0,018263 NH4-N SON -0,00513 -0,01717 -0,10373 -0,02557 NH4-N YR -0,00355 -0,04018