Arithmetic Sequences.

Slides:



Advertisements
Similar presentations
Choi 2012 Arithmetic Sequence A sequence like 2, 5, 8, 11,…, where the difference between consecutive terms is a constant, is called an arithmetic sequence.
Advertisements

OBJECTIVE We will find the missing terms in an arithmetic and a geometric sequence by looking for a pattern and using the formula.
Geometric Sequences.
Do Now Pass out calculators. Solve the following system by graphing: Graph paper is in the back. 5x + 2y = 9 x + y = -3 Solve the following system by using.
Arithmetic Sequences Finding the nth Term. Arithmetic Sequences A pattern where all numbers are related by the same common difference. The common difference.
A sequence in which a constant (d) can be added to each term to get the next term is called an Arithmetic Sequence. The constant (d) is called the Common.
4.7 Arithmetic Sequences A sequence is a set of numbers in a specific order. The numbers in the sequence are called terms. If the difference between successive.
2-1 Arithmetic Sequences Definitions & Equations Writing & Solving Arithmetic Sequences Practice Problems.
Arithmetic Sequences.
EXAMPLE 2 Write a rule for the nth term a. 4, 9, 14, 19,... b. 60, 52, 44, 36,... SOLUTION The sequence is arithmetic with first term a 1 = 4 and common.
A sequence in which a constant (d) can be added to each term to get the next term is called an Arithmetic Sequence. The constant (d) is called the Common.
Arithmetic Sequences (Recursive Formulas). Vocabulary sequence – a set of numbers in a specific order. terms – the numbers in the sequence. arithmetic.
Lesson 4-7 Arithmetic Sequences.
Do Now 1/13/12  In your notebook, list the possible ways to solve a linear system. Then solve the following systems. 5x + 6y = 50 -x + 6y = 26 -8y + 6x.
M3U1D2 Warmup: Find the next three terms of each sequence. Explain how you found the terms. 1.2, 5, 8, 11, ______, ______, ______ 2. 12, 7, 2, -3, ______,
Sec How Arithmetic Sequences Work?
Solving by Elimination Example 1: STEP 2: Look for opposite terms. STEP 1: Write both equations in Standard Form to line up like variables. STEP 5: Solve.
7.4. 5x + 2y = 16 5x + 2y = 16 3x – 4y = 20 3x – 4y = 20 In this linear system neither variable can be eliminated by adding the equations. In this linear.
Objective solve systems of equations using elimination.
Arithmetic Sequences. Arithmetic sequence Before talking about arithmetic sequence, in math, a sequence is a set of numbers that follow a pattern. We.
Arithmetic Sequences.
Section 4-7: Arithmetic Sequences.
11.2 Arithmetic Sequences & Series
Arithmetic Sequences.
Sequences Arithmetic Sequence:
11.2 Arithmetic Sequences.
Solving Systems of Equations using Elimination
Arithmetic Sequences Explicit Formulas.
11.2 Arithmetic Sequences & Series
11.2 Arithmetic Sequences & Series
Patterns & Sequences Algebra I, 9/13/17.
Lesson 7-1: Geometric Mean
5.3 Arithmetic Series (1/5) In an arithmetic series each term increases by a constant amount (d) This means the difference between consecutive terms is.
Algebraic Equations Solving One Step Equations with Whole Numbers
3-2: Solving Systems of Equations using Elimination
4.7: Arithmetic sequences
6-3 Solving Systems Using Elimination
3.3: Solving Systems of Equations using Elimination
WARM UP State the pattern for each set.
Grade 11 Functions (MCR3U)
Sequence: A list of numbers in a particular order
12.2A Arithmetic Sequences
Do Now 1) t + 3 = – 2 2) 18 – 4v = 42.
Arithmetic Sequences.
3-2: Solving Systems of Equations using Elimination
Solve Linear Equations by Elimination
Arithmetic Sequences.
Geometric sequences.
Lesson 7-1: Geometric Mean
3-2: Solving Systems of Equations using Elimination
Solving 1-Step Integer Equations
4.9 – arithmetic sequences
Solving Absolute Value Equations
PRACTICE QUIZ Solve the following equations. x + 5 = x – 8 = -12
3-2: Solving Systems of Equations using Elimination
Arithmetic Sequences.
Solving Absolute Value Equations
Solving Systems of Equations using Elimination
Solving Absolute Value Equations
Solving Absolute Value Equations
Solving Equations with Absolute Values
Solving Absolute Value Equations
Unit 1 – Section 4 “Recursive and Explicit Formula” Part 2
Does each term increase/decrease by the same added amount each time?
Solving Equations with Fractions
Arithmetic Sequences.
One-step addition & subtraction equations: fractions & decimals
Solving Linear Equations
Solving Absolute Value Equations
Presentation transcript:

Arithmetic Sequences

A sequence in which a constant (d) can be added to each term to get the next term is called an Arithmetic Sequence. The constant (d) is called the Definition Common Difference. To find the common difference (d), subtract any term from one that follows it. t1 t2 t3 t4 t5 2 5 8 11 14 3 3 3 3

Find the first term and the common difference of each arithmetic sequence. Examples: First term (a): 4 Common difference (d): = 9 – 4 = 5 First term (a): 34 Common difference (d): -7 BE CAREFUL: ALWAYS CHECK TO MAKE SURE THE DIFFERENCE IS THE SAME BETWEEN EACH TERM !

Now you try! Find the first term and the common difference of each of these arithmetic sequences. a) 1, -4, -9, -14, …. b) 11, 23, 35, 47, …. c) 3x-8, x-8, -x-8, -3x-8 d) s-4, 3s-3, 5s-2, 7s-1, …..

Answers with solutions a = 1 and d = a2 - a1 = - 4 - 1 = - 5 b) 11, 23, 35, 47, …. a = 11 and d = a2 - a1 = 23 - 11 = 12 a = 3x-8 and d = a2 - a1 = x – 8 – (3x – 8) = - 2x c) 3x-8, x-8, -x-8, -3x-8 a = s - 4 and d = a2 - a1 = 3s – 3 – (s – 4) = 2s + 1 d) s-4, 3s-3, 5s-2, 7s-1, …..

The first term of an arithmetic sequence is (a) The first term of an arithmetic sequence is (a) . We add (d) to get the next term. There is a pattern, therefore there is a formula we can use to give use any term that we need without listing the whole sequence . 3, 7, 11, 15, …. We know a = 3 and d = 4 t1= a = 3 t2= a+d = 3+4 = 7 t3= a+d+d = a+2d = 3+2(4) = 11 t4 = a+d+d+d = a+3d = 3+3(4) = 15

The first term of an arithmetic sequence is (a) The first term of an arithmetic sequence is (a) . We add (d) to get the next term. There is a pattern, therefore there is a formula we can use to give use any term that we need without listing the whole sequence . The nth term of an arithmetic sequence is given by: tn = a + (n – 1) d The last # in the sequence/or the # you are looking for The position the term is in First term The common difference

The 14th term in this sequence is the number 43! Examples: Find the 14th term of the arithmetic sequence 4, 7, 10, 13,…… tn = a + (n – 1) d You are looking for the term! t14 = The 14th term in this sequence is the number 43!

Now you try! a) 1, 7, 13, 19 …. b) x+10, x+7, x+4, x+1, …. Find the 10th and 25th term given the following information. Make sure to derive the general formula first and then list ehat you have been provided. a) 1, 7, 13, 19 …. b) x+10, x+7, x+4, x+1, …. c) The first term is 3 and the common difference is -21 d) The second term is 8 and the common difference is 3

Answers with solutions a = 1 and d = a2 - a1 = 7 – 1 = 6 tn=a+(n-1)d = 1 + (n-1) 6 = 1+6n-6 So tn = 6n-5 t10 = 6(10) – 5 = 55 t25 = 6(25)-5 = 145 a) 1, 7, 13, 19 …. …. a = x+10 and d = a2 - a1 = x+7-(x+10) = -3 tn=a+(n-1)d = x+10 + (n-1)(-3) = x+10-3n+3 So tn= x-3n+13 t10 = x -3(10)+13 = x - 17 t25 = x -3(25)+13 = x - 62 b) x+10, x+7, x+4, x+1,. a = 3 and d = -21 tn=a+(n-1)d = 3 + (n-1) -21 = 3-21n+21 So tn= 24-21n t10 = 24-21(10) = -186 t25 = 24-21(25) = -501 c) The first term is 3 and the common difference is -21 d) The second term is 8 and the common difference is 3 a = 8 - 3 = 5 and d = 3 tn=a+(n-1)d = 5 + (n-1) 3 = 5+3n-3 So tn = 3n+2 t10 = 3(10) +2 = 32 t25 = 3(25)+2 = 77

The 14th term in this sequence is the number -73! Examples: Find the 14th term of the arithmetic sequence with first term of 5 and the common difference is –6. a = 5 and d = -6 You are looking for the term! List which variables from the general term are provided! tn = a + (n – 1) d t14 = -6 5 = 5 + (13) * -6 = 5 + -78 = -73 The 14th term in this sequence is the number -73!

The 100th term in this sequence is 301! Examples: In the arithmetic sequence 4,7,10,13,…, which term has a value of 301? tn = a + (n – 1) d You are looking for n! The 100th term in this sequence is 301!

HMMM! Two equations you can solve! Examples: In an arithmetic sequence, term 10 is 33 and term 22 is –3. What are the first four terms of the sequence? t10=33 t22= -3 Use what you know! tn = a + (n – 1) d For term 22: -3= a + 21d tn = a + (n – 1) d For term 10: 33= a + 9d HMMM! Two equations you can solve! SOLVE: 33 = a+9d -3 = a+21d By elimination -36 = 12d -3 = d SOLVE: 33 = a + 9d 33 = a +9(-3) 33 = a –27 60 = a The sequence is 60, 57, 54, 51, …….