Solve Numerically : First normalize Then evaluate
Average Values of Powers of the Coordinate
Kepler Coulomb : V(r ) = - k/r Isotropic Harmonic Oscillator : V(r ) = Kr2/2
Numerical Solution: Hydrogen atom (3p) E = - Ry / 9 ; L = 3ħ/2 ; V(r ) = - Ry a0 /r Radial momentum ( Units : [energy] = Ry ; [length] = a0 Limits: A- = 1.2085 ; A+ = 16.794 Normalization : C = 84.82 Moments: r = 12.375 r -1 = 0.1111 r -2 = 0.02469 r -3 = 0.01097
Numerical Solution: Isotropic SHO (nr=0 ; l=3) E = 9ħ/2 ; L = 7ħ/2 ; V(r ) = m2 r2 / 2 Radial momentum ( Units : [energy] = ħ ; [length] = (ħ/m)1/2 Limits: A- = 1.2929 ; A+ = 2.7071 Normalization : C = 2.215 Moments: r 2 = 4.500 r 4 = 24.25 r -2 = 0.2825 r -4 = 0.1050
Einstein-Brillouin-Keller Action Quantization (1917) (1926) (1958) Bohr-Sommerfeld-Wilson quantization used fuzzy math, neglecting caustics at turning points in librations. The correct semiclassical action quantization condition is: where i = 0 (rotations) Topological Maslov Index = 2 (librations) It yields astonishingly accurate results !!!