Volume 95, Issue 7, Pages (October 2008)

Slides:



Advertisements
Similar presentations
Mesoscale Simulation of Blood Flow in Small Vessels Prosenjit Bagchi Biophysical Journal Volume 92, Issue 6, Pages (March 2007) DOI: /biophysj
Advertisements

Near-Critical Behavior of Aminoacyl-tRNA Pools in E. coli at Rate-Limiting Supply of Amino Acids Johan Elf, Måns Ehrenberg Biophysical Journal Volume 88,
Volume 94, Issue 11, Pages (June 2008)
Chia-Pin Pan, Mary D. Barkley  Biophysical Journal 
Volume 91, Issue 12, Pages (December 2006)
A Protein Dynamics Study of Photosystem II: The Effects of Protein Conformation on Reaction Center Function  Sergej Vasil’ev, Doug Bruce  Biophysical.
Anmin Tan, André Ziegler, Bernhard Steinbauer, Joachim Seelig 
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Dejun Lin, Alan Grossfield  Biophysical Journal 
Volume 96, Issue 10, Pages (May 2009)
Volume 100, Issue 10, Pages (May 2011)
Insertion of Alzheimer’s Aβ40 Peptide into Lipid Monolayers
Daniel M. Freed, Peter S. Horanyi, Michael C. Wiener, David S. Cafiso 
Dissecting the Actinoporin Pore-Forming Mechanism
Volume 93, Issue 10, Pages (November 2007)
A Coiled-Coil Peptide Shaping Lipid Bilayers upon Fusion
Volume 103, Issue 3, Pages (August 2012)
Amy Y. Shih, Stephen G. Sligar, Klaus Schulten  Biophysical Journal 
Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities  Arnaud Marquette, Bernard.
Fusion Peptides Promote Formation of Bilayer Cubic Phases in Lipid Dispersions. An X- Ray Diffraction Study  Boris G. Tenchov, Robert C. MacDonald, Barry.
Volume 88, Issue 1, Pages (January 2005)
Volume 88, Issue 1, Pages (January 2005)
Volume 112, Issue 2, Pages (January 2017)
Volume 102, Issue 3, Pages (February 2012)
Membrane Thickening by the Antimicrobial Peptide PGLa
Volume 87, Issue 4, Pages (October 2004)
Volume 99, Issue 8, Pages (October 2010)
Volume 93, Issue 9, Pages (November 2007)
G. Fiorin, A. Pastore, P. Carloni, M. Parrinello  Biophysical Journal 
Haden L. Scott, Justin M. Westerfield, Francisco N. Barrera 
Thermodynamic Profiling of Peptide Membrane Interactions by Isothermal Titration Calorimetry: A Search for Pores and Micelles  J.R. Henriksen, T.L. Andresen 
Role of Cholesterol in the Formation and Nature of Lipid Rafts in Planar and Spherical Model Membranes  Jonathan M. Crane, Lukas K. Tamm  Biophysical.
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Pavanjeet Kaur, Yaqiong Li, Jianfeng Cai, Likai Song 
Heiko Heerklotz, Joachim Seelig  Biophysical Journal 
Volume 92, Issue 5, Pages (March 2007)
Volume 103, Issue 8, Pages (October 2012)
Molecular Model of a Cell Plasma Membrane With an Asymmetric Multicomponent Composition: Water Permeation and Ion Effects  Robert Vácha, Max L. Berkowitz,
Volume 95, Issue 9, Pages (November 2008)
Sundeep S. Deol, Peter J. Bond, Carmen Domene, Mark S.P. Sansom 
Interaction of Verapamil with Lipid Membranes and P-Glycoprotein: Connecting Thermodynamics and Membrane Structure with Functional Activity  M. Meier,
Volume 96, Issue 2, Pages (January 2009)
Chang-Chun Lee, Yen Sun, Huey W. Huang  Biophysical Journal 
Desmosterol May Replace Cholesterol in Lipid Membranes
Volume 95, Issue 9, Pages (November 2008)
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Shelly Tzlil, Diana Murray, Avinoam Ben-Shaul  Biophysical Journal 
The Structural Basis of Cholesterol Accessibility in Membranes
Volume 86, Issue 4, Pages (April 2004)
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Volume 80, Issue 5, Pages (May 2001)
Volume 91, Issue 4, Pages (August 2006)
OmpT: Molecular Dynamics Simulations of an Outer Membrane Enzyme
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Volume 95, Issue 5, Pages (September 2008)
Volume 95, Issue 7, Pages (October 2008)
Volume 102, Issue 1, Pages (January 2012)
Vesna Serrano, Wenge Liu, Stefan Franzen  Biophysical Journal 
Main Phase Transitions in Supported Lipid Single-Bilayer
Volume 105, Issue 6, Pages (September 2013)
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
Alexander Spaar, Christian Münster, Tim Salditt  Biophysical Journal 
Membrane Perturbation Induced by Interfacially Adsorbed Peptides
Volume 94, Issue 11, Pages (June 2008)
Volume 90, Issue 9, Pages (May 2006)
Probing the Lipid Membrane Dipole Potential by Atomic Force Microscopy
Volume 96, Issue 3, Pages (February 2009)
Phosphate Binding in the Active Site of Alkaline Phosphatase and the Interactions of 2- Nitrosoacetophenone with Alkaline Phosphatase-Induced Small Structural.
Volume 93, Issue 9, Pages (November 2007)
Volume 94, Issue 8, Pages (April 2008)
Presentation transcript:

Volume 95, Issue 7, Pages 3306-3321 (October 2008) Interaction of Gramicidin S and its Aromatic Amino-Acid Analog with Phospholipid Membranes  Masoud Jelokhani-Niaraki, Robert S. Hodges, Joseph E. Meissner, Una E. Hassenstein, Laura Wheaton  Biophysical Journal  Volume 95, Issue 7, Pages 3306-3321 (October 2008) DOI: 10.1529/biophysj.108.137471 Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 1 Molecular model for the amphipathic β-sheet-β-turn conformation of GS. Biophysical Journal 2008 95, 3306-3321DOI: (10.1529/biophysj.108.137471) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 2 CD spectra of the six peptides in Tris buffer (A), and POPC vesicles in Tris buffer (B). See Instrumentation for experimental conditions. Biophysical Journal 2008 95, 3306-3321DOI: (10.1529/biophysj.108.137471) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 3 CD concentration-dependence spectra of GS in POPC (A), and POPE/POPG (B) vesicles dispersed in Tris buffer. See Instrumentation for experimental conditions. Biophysical Journal 2008 95, 3306-3321DOI: (10.1529/biophysj.108.137471) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 4 Emission spectra (excitation at 280nm) of GS10WY in Tris buffer, 80% methanol, and POPC vesicles dispersed in Tris buffer. See Instrumentation for experimental conditions. Biophysical Journal 2008 95, 3306-3321DOI: (10.1529/biophysj.108.137471) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 5 Top views of molecular models of GS: top view of the GS in Fig. 1 with omitted amino-acid side chains (A), and top view of GS bound to a bacterial proteinase (22) (only GS is shown) (B). Biophysical Journal 2008 95, 3306-3321DOI: (10.1529/biophysj.108.137471) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 6 Heat of binding of peptides to POPC vesicles: GS (A), GS10WW (B), and GS10FY (C). See Instrumentation for experimental conditions. The “molar ratios” in the figures are lipid/peptide molar ratios. Biophysical Journal 2008 95, 3306-3321DOI: (10.1529/biophysj.108.137471) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 7 Heat of binding of peptides to POPE/POPG vesicles: GS (A), GS10WW (B), and GS10FY (C). See Instrumentation for experimental conditions. The “molar ratios” in the figures are lipid/peptide molar ratios. Biophysical Journal 2008 95, 3306-3321DOI: (10.1529/biophysj.108.137471) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 8 Binding isotherms for GS, GS10WW and GS10FY in POPC (solid symbols) and POPE/POPG (open symbols) lipid systems. Biophysical Journal 2008 95, 3306-3321DOI: (10.1529/biophysj.108.137471) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 9 (A) Scheme for preferential binding of the cyclic aromatic peptides to different regions of bilayer depending on their aromatic amino-acid composition (peptides have similar backbone structures); (B) comparison between the enthalpies and affinities of binding of peptides to the bilayer hydrophobic core versus bilayer interface (Tables 1 and 5). Biophysical Journal 2008 95, 3306-3321DOI: (10.1529/biophysj.108.137471) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 10 A mechanism for the binding of GS and its aromatic analogs to lipid bilayers: (0) Monomeric cyclic peptides are attracted to and approach the bilayer surface in their tense conformation. (1) Cyclic peptides adsorb on the bilayer surface and bind to surface through hydrophobic effect and electrostatic interactions; tense conformation of cyclic peptides changes toward relaxed conformation. (2) Cyclic peptides adopt the relaxed conformation, insert deeper into bilayer, deform the membrane structure without forming peptide-peptide associations, and induce leakage (low P/L ratios). (3) Cyclic peptide-lipid complexes form nonspecific transient porelike zones enhancing the leakage through membranes (high P/L ratios). Biophysical Journal 2008 95, 3306-3321DOI: (10.1529/biophysj.108.137471) Copyright © 2008 The Biophysical Society Terms and Conditions