EPP 245 Statistical Analysis of Laboratory Data

Slides:



Advertisements
Similar presentations
Dummy Variables and Interactions. Dummy Variables What is the the relationship between the % of non-Swiss residents (IV) and discretionary social spending.
Advertisements

Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.7 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Sociology 601 Class 24: November 19, 2009 (partial) Review –regression results for spurious & intervening effects –care with sample sizes for comparing.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.16 Original citation: Dougherty, C. (2012) EC220 - Introduction.
From Anova to Regression: analyzing the effect on consumption of no. of persons in family Family consumption data family.dta E/Albert/Courses/cdas/appstat00/From.
More on Regression Spring The Linear Relationship between African American Population & Black Legislators.
Heteroskedasticity The Problem:
HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS 1 Heteroscedasticity causes OLS standard errors to be biased is finite samples. However it can be demonstrated.
Lecture 9 Today: Ch. 3: Multiple Regression Analysis Example with two independent variables Frisch-Waugh-Lovell theorem.
1 Nonlinear Regression Functions (SW Chapter 8). 2 The TestScore – STR relation looks linear (maybe)…
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: exercise 3.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Multiple Regression Spring Gore Likeability Example Suppose: –Gore’s* likeability is a function of Clinton’s likeability and not directly.
SPH 247 Statistical Analysis of Laboratory Data 1April 23, 2010SPH 247 Statistical Analysis of Laboratory Data.
Sociology 601 Class 25: November 24, 2009 Homework 9 Review –dummy variable example from ASR (finish) –regression results for dummy variables Quadratic.
Sociology 601 Class 28: December 8, 2009 Homework 10 Review –polynomials –interaction effects Logistic regressions –log odds as outcome –compared to linear.
1 Multiple Regression EPP 245/298 Statistical Analysis of Laboratory Data.
Regression Example Using Pop Quiz Data. Second Pop Quiz At my former school (Irvine), I gave a “pop quiz” to my econometrics students. The quiz consisted.
Introduction to Regression Analysis Straight lines, fitted values, residual values, sums of squares, relation to the analysis of variance.
Addressing Alternative Explanations: Multiple Regression Spring 2007.
1 Review of Correlation A correlation coefficient measures the strength of a linear relation between two measurement variables. The measure is based on.
1 Michigan.do. 2. * construct new variables;. gen mi=state==26;. * michigan dummy;. gen hike=month>=33;. * treatment period dummy;. gen treatment=hike*mi;
Regression Forced March Spring Regression quantifies how one variable can be described in terms of another.
Sociology 601 Class 23: November 17, 2009 Homework #8 Review –spurious, intervening, & interactions effects –stata regression commands & output F-tests.
A trial of incentives to attend adult literacy classes Carole Torgerson, Greg Brooks, Jeremy Miles, David Torgerson Classes randomised to incentive or.
1 Zinc Data EPP 245 Statistical Analysis of Laboratory Data.
1 Regression and Calibration EPP 245 Statistical Analysis of Laboratory Data.
Sociology 601 Class 26: December 1, 2009 (partial) Review –curvilinear regression results –cubic polynomial Interaction effects –example: earnings on married.
1 Multivariate Analysis and Discrimination EPP 245 Statistical Analysis of Laboratory Data.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: variable misspecification iii: consequences for diagnostics Original.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: exercise 5.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
EDUC 200C Section 4 – Review Melissa Kemmerle October 19, 2012.
EXERCISE 5.5 The Stata output shows the result of a semilogarithmic regression of earnings on highest educational qualification obtained, work experience,
Returning to Consumption
Country Gini IndexCountryGini IndexCountryGini IndexCountryGini Index Albania28.2Georgia40.4Mozambique39.6Turkey38 Algeria35.3Germany28.3Nepal47.2Turkmenistan40.8.
Addressing Alternative Explanations: Multiple Regression
EDUC 200C Section 3 October 12, Goals Review correlation prediction formula Calculate z y ’ = r xy z x for a new data set Use formula to predict.
F TEST OF GOODNESS OF FIT FOR THE WHOLE EQUATION 1 This sequence describes two F tests of goodness of fit in a multiple regression model. The first relates.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Lecture 3 Linear random intercept models. Example: Weight of Guinea Pigs Body weights of 48 pigs in 9 successive weeks of follow-up (Table 3.1 DLZ) The.
Biostat 200 Lecture Simple linear regression Population regression equationμ y|x = α +  x α and  are constants and are called the coefficients.
. reg LGEARN S WEIGHT85 Source | SS df MS Number of obs = F( 2, 537) = Model |
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: exercise 5.2 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Panel Data. Assembling the Data insheet using marriage-data.csv, c d u "background-data", clear d u "experience-data", clear u "wage-data", clear d reshape.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: exercise 4.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Lecture 5. Linear Models for Correlated Data: Inference.
STAT E100 Section Week 12- Regression. Course Review - Project due Dec 17 th, your TA. - Exam 2 make-up is Dec 5 th, practice tests have been updated.
RAMSEY’S RESET TEST OF FUNCTIONAL MISSPECIFICATION 1 Ramsey’s RESET test of functional misspecification is intended to provide a simple indicator of evidence.
1 CHANGES IN THE UNITS OF MEASUREMENT Suppose that the units of measurement of Y or X are changed. How will this affect the regression results? Intuitively,
GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL The output above shows the result of regressing EARNINGS, hourly earnings in dollars, on S, years.
1 BINARY CHOICE MODELS: LINEAR PROBABILITY MODEL Economists are often interested in the factors behind the decision-making of individuals or enterprises,
1 REPARAMETERIZATION OF A MODEL AND t TEST OF A LINEAR RESTRICTION Linear restrictions can also be tested using a t test. This involves the reparameterization.
1 In the Monte Carlo experiment in the previous sequence we used the rate of unemployment, U, as an instrument for w in the price inflation equation. SIMULTANEOUS.
F TESTS RELATING TO GROUPS OF EXPLANATORY VARIABLES 1 We now come to more general F tests of goodness of fit. This is a test of the joint explanatory power.
WHITE TEST FOR HETEROSCEDASTICITY 1 The White test for heteroscedasticity looks for evidence of an association between the variance of the disturbance.
1 COMPARING LINEAR AND LOGARITHMIC SPECIFICATIONS When alternative specifications of a regression model have the same dependent variable, R 2 can be used.
1 Analysis of Variance (ANOVA) EPP 245/298 Statistical Analysis of Laboratory Data.
QM222 Class 19 Section D1 Tips on your Project
QM222 Class 9 Section A1 Coefficient statistics
From t-test to multilevel analyses Del-2
QM222 Class 16 & 17 Today’s New topic: Estimating nonlinear relationships QM222 Fall 2017 Section A1.
QM222 Class 11 Section A1 Multiple Regression
QM222 Class 8 Section A1 Using categorical data in regression
The slope, explained variance, residuals
QM222 Your regressions and the test
Auto Accidents: What’s responsible?
QM222 Class 15 Section D1 Review for test Multicollinearity
Covariance x – x > 0 x (x,y) y – y > 0 y x and y axes.
Eva Ørnbøl + Morten Frydenberg
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 Multiple Regression EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 Cystic Fibrosis Data Cystic fibrosis lung function data lung function data for cystic fibrosis patients (7-23 years old) age a numeric vector. Age in years. sex a numeric vector code. 0: male, 1:female. height a numeric vector. Height (cm). weight a numeric vector. Weight (kg). bmp a numeric vector. Body mass (% of normal). fev1 a numeric vector. Forced expiratory volume. rv a numeric vector. Residual volume. frc a numeric vector. Functional residual capacity. tlc a numeric vector. Total lung capacity. pemax a numeric vector. Maximum expiratory pressure. October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 Some Stata Commands . insheet using "cystfibr.csv" (11 vars, 25 obs) . graph matrix age sex height weight bmp fev1 rv frc tlc pemax . graph export cystfibr-scm.wmf . regress pemax age sex height weight bmp fev1 rv frc tlc . rvfplot . graph export cystfibr-rvf.wmf October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 9, 15) = 2.93 Model | 17101.3907 9 1900.15452 Prob > F = 0.0320 Residual | 9731.24928 15 648.749952 R-squared = 0.6373 -------------+------------------------------ Adj R-squared = 0.4197 Total | 26832.64 24 1118.02667 Root MSE = 25.471 ------------------------------------------------------------------------------ pemax | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -2.54196 4.801699 -0.53 0.604 -12.77654 7.692618 sex | -3.736782 15.45982 -0.24 0.812 -36.68861 29.21505 height | -.4462549 .9033548 -0.49 0.628 -2.37171 1.4792 weight | 2.992816 2.007957 1.49 0.157 -1.287044 7.272675 bmp | -1.744944 1.155237 -1.51 0.152 -4.207274 .7173865 fev1 | 1.080697 1.080947 1.00 0.333 -1.223288 3.384682 rv | .196972 .1962136 1.00 0.331 -.2212474 .6151915 frc | -.3084314 .4923899 -0.63 0.540 -1.357936 .7410729 tlc | .1886017 .4997351 0.38 0.711 -.8765585 1.253762 _cons | 176.0582 225.8911 0.78 0.448 -305.4174 657.5338 October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 9, 15) = 2.93 Model | 17101.3907 9 1900.15452 Prob > F = 0.0320 Residual | 9731.24928 15 648.749952 R-squared = 0.6373 -------------+------------------------------ Adj R-squared = 0.4197 Total | 26832.64 24 1118.02667 Root MSE = 25.471 ------------------------------------------------------------------------------ pemax | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -2.54196 4.801699 -0.53 0.604 -12.77654 7.692618 sex | -3.736782 15.45982 -0.24 0.812 -36.68861 29.21505 height | -.4462549 .9033548 -0.49 0.628 -2.37171 1.4792 weight | 2.992816 2.007957 1.49 0.157 -1.287044 7.272675 bmp | -1.744944 1.155237 -1.51 0.152 -4.207274 .7173865 fev1 | 1.080697 1.080947 1.00 0.333 -1.223288 3.384682 rv | .196972 .1962136 1.00 0.331 -.2212474 .6151915 frc | -.3084314 .4923899 -0.63 0.540 -1.357936 .7410729 tlc | .1886017 .4997351 0.38 0.711 -.8765585 1.253762 _cons | 176.0582 225.8911 0.78 0.448 -305.4174 657.5338 T-test of additional value of variable October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 9, 15) = 2.93 Model | 17101.3907 9 1900.15452 Prob > F = 0.0320 Residual | 9731.24928 15 648.749952 R-squared = 0.6373 -------------+------------------------------ Adj R-squared = 0.4197 Total | 26832.64 24 1118.02667 Root MSE = 25.471 ------------------------------------------------------------------------------ pemax | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -2.54196 4.801699 -0.53 0.604 -12.77654 7.692618 sex | -3.736782 15.45982 -0.24 0.812 -36.68861 29.21505 height | -.4462549 .9033548 -0.49 0.628 -2.37171 1.4792 weight | 2.992816 2.007957 1.49 0.157 -1.287044 7.272675 bmp | -1.744944 1.155237 -1.51 0.152 -4.207274 .7173865 fev1 | 1.080697 1.080947 1.00 0.333 -1.223288 3.384682 rv | .196972 .1962136 1.00 0.331 -.2212474 .6151915 frc | -.3084314 .4923899 -0.63 0.540 -1.357936 .7410729 tlc | .1886017 .4997351 0.38 0.711 -.8765585 1.253762 _cons | 176.0582 225.8911 0.78 0.448 -305.4174 657.5338 Test of whole model October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 9, 15) = 2.93 Model | 17101.3907 9 1900.15452 Prob > F = 0.0320 Residual | 9731.24928 15 648.749952 R-squared = 0.6373 -------------+------------------------------ Adj R-squared = 0.4197 Total | 26832.64 24 1118.02667 Root MSE = 25.471 ------------------------------------------------------------------------------ pemax | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -2.54196 4.801699 -0.53 0.604 -12.77654 7.692618 sex | -3.736782 15.45982 -0.24 0.812 -36.68861 29.21505 height | -.4462549 .9033548 -0.49 0.628 -2.37171 1.4792 weight | 2.992816 2.007957 1.49 0.157 -1.287044 7.272675 bmp | -1.744944 1.155237 -1.51 0.152 -4.207274 .7173865 fev1 | 1.080697 1.080947 1.00 0.333 -1.223288 3.384682 rv | .196972 .1962136 1.00 0.331 -.2212474 .6151915 frc | -.3084314 .4923899 -0.63 0.540 -1.357936 .7410729 tlc | .1886017 .4997351 0.38 0.711 -.8765585 1.253762 _cons | 176.0582 225.8911 0.78 0.448 -305.4174 657.5338 Least significant variable October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 . regress pemax age height weight bmp fev1 rv frc tlc Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 8, 16) = 3.49 Model | 17063.4886 8 2132.93607 Prob > F = 0.0159 Residual | 9769.15144 16 610.571965 R-squared = 0.6359 -------------+------------------------------ Adj R-squared = 0.4539 Total | 26832.64 24 1118.02667 Root MSE = 24.71 ------------------------------------------------------------------------------ pemax | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -2.114515 4.330841 -0.49 0.632 -11.29549 7.066459 height | -.394836 .851725 -0.46 0.649 -2.200412 1.41074 weight | 2.834909 1.841995 1.54 0.143 -1.069947 6.739765 bmp | -1.741637 1.120651 -1.55 0.140 -4.117312 .634038 fev1 | 1.26509 .7429407 1.70 0.108 -.3098737 2.840054 rv | .1779046 .1742911 1.02 0.323 -.1915759 .5473852 frc | -.2483218 .4122804 -0.60 0.555 -1.122317 .6256736 tlc | .2084044 .4782484 0.44 0.669 -.8054369 1.222246 _cons | 153.0385 198.7149 0.77 0.452 -268.2183 574.2953 Least significant variable October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 . regress pemax age height weight bmp fev1 rv frc Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 7, 17) = 4.16 Model | 16947.5458 7 2421.07798 Prob > F = 0.0077 Residual | 9885.09416 17 581.476127 R-squared = 0.6316 -------------+------------------------------ Adj R-squared = 0.4799 Total | 26832.64 24 1118.02667 Root MSE = 24.114 ------------------------------------------------------------------------------ pemax | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -2.663193 4.043832 -0.66 0.519 -11.19493 5.868546 height | -.4895733 .8036502 -0.61 0.550 -2.185127 1.205981 weight | 3.155659 1.647815 1.92 0.072 -.3209274 6.632245 bmp | -1.962543 .9753332 -2.01 0.060 -4.020316 .0952305 fev1 | 1.247861 .7239953 1.72 0.103 -.2796361 2.775357 rv | .1595988 .1650733 0.97 0.347 -.1886753 .5078729 frc | -.1764595 .368749 -0.48 0.638 -.9544518 .6015328 _cons | 198.2942 165.3311 1.20 0.247 -150.5238 547.1123 Least significant variable October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 . regress pemax age height weight bmp fev1 rv Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 6, 18) = 5.04 Model | 16814.3899 6 2802.39832 Prob > F = 0.0034 Residual | 10018.2501 18 556.569447 R-squared = 0.6266 -------------+------------------------------ Adj R-squared = 0.5022 Total | 26832.64 24 1118.02667 Root MSE = 23.592 ------------------------------------------------------------------------------ pemax | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -1.819342 3.560301 -0.51 0.616 -9.299258 5.660573 height | -.4101508 .7693006 -0.53 0.600 -2.026391 1.20609 weight | 2.874434 1.506126 1.91 0.072 -.2898203 6.038688 bmp | -1.949083 .9538193 -2.04 0.056 -3.952983 .0548169 fev1 | 1.411959 .6238279 2.26 0.036 .1013452 2.722573 rv | .0955779 .0946057 1.01 0.326 -.1031813 .2943371 _cons | 166.9049 148.4762 1.12 0.276 -145.0321 478.8418 Least significant variable October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 . regress pemax height weight bmp fev1 rv Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 5, 19) = 6.23 Model | 16669.0534 5 3333.81068 Prob > F = 0.0014 Residual | 10163.5866 19 534.92561 R-squared = 0.6212 -------------+------------------------------ Adj R-squared = 0.5215 Total | 26832.64 24 1118.02667 Root MSE = 23.128 ------------------------------------------------------------------------------ pemax | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- height | -.4485274 .7505918 -0.60 0.557 -2.019534 1.122479 weight | 2.338692 1.060094 2.21 0.040 .1198889 4.557495 bmp | -1.641001 .7246036 -2.26 0.035 -3.157614 -.1243885 fev1 | 1.471767 .6007182 2.45 0.024 .2144491 2.729084 rv | .110117 .0884543 1.24 0.228 -.07502 .295254 _cons | 137.0958 133.8559 1.02 0.319 -143.0677 417.2594 Least significant variable October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 . regress pemax weight bmp fev1 rv Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 4, 20) = 7.96 Model | 16478.0401 4 4119.51002 Prob > F = 0.0005 Residual | 10354.5999 20 517.729996 R-squared = 0.6141 -------------+------------------------------ Adj R-squared = 0.5369 Total | 26832.64 24 1118.02667 Root MSE = 22.754 ------------------------------------------------------------------------------ pemax | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- weight | 1.748914 .3806332 4.59 0.000 .9549274 2.542901 bmp | -1.377243 .5653421 -2.44 0.024 -2.556526 -.1979604 fev1 | 1.547698 .5776112 2.68 0.014 .3428223 2.752574 rv | .1257152 .0831456 1.51 0.146 -.0477234 .2991538 _cons | 63.9467 53.27673 1.20 0.244 -47.18661 175.08 Least significant variable October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 . regress pemax weight bmp fev1 Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 3, 21) = 9.28 Model | 15294.4519 3 5098.15064 Prob > F = 0.0004 Residual | 11538.1881 21 549.437528 R-squared = 0.5700 -------------+------------------------------ Adj R-squared = 0.5086 Total | 26832.64 24 1118.02667 Root MSE = 23.44 ------------------------------------------------------------------------------ pemax | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- weight | 1.536475 .3644235 4.22 0.000 .7786149 2.294335 bmp | -1.465406 .5792906 -2.53 0.019 -2.670106 -.260705 fev1 | 1.108629 .5143694 2.16 0.043 .0389396 2.178319 _cons | 126.3336 34.71986 3.64 0.002 54.12965 198.5375 October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 . stepwise, pr(.05): regress pemax age sex height weight bmp fev1 rv frc tlc begin with full model p = 0.8123 >= 0.0500 removing sex p = 0.6688 >= 0.0500 removing tlc p = 0.6384 >= 0.0500 removing frc p = 0.6156 >= 0.0500 removing age p = 0.5572 >= 0.0500 removing height p = 0.1462 >= 0.0500 removing rv Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 3, 21) = 9.28 Model | 15294.4519 3 5098.15064 Prob > F = 0.0004 Residual | 11538.1881 21 549.437528 R-squared = 0.5700 -------------+------------------------------ Adj R-squared = 0.5086 Total | 26832.64 24 1118.02667 Root MSE = 23.44 ------------------------------------------------------------------------------ pemax | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- fev1 | 1.108629 .5143694 2.16 0.043 .0389396 2.178319 weight | 1.536475 .3644235 4.22 0.000 .7786149 2.294335 bmp | -1.465406 .5792906 -2.53 0.019 -2.670106 -.260705 _cons | 126.3336 34.71986 3.64 0.002 54.12965 198.5375 October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 . stepwise, pr(.1) pe(.05): regress pemax age sex height weight bmp fev1 rv frc tlc begin with full model p = 0.8123 >= 0.1000 removing sex p = 0.6688 >= 0.1000 removing tlc p = 0.6384 >= 0.1000 removing frc p = 0.6156 >= 0.1000 removing age p = 0.5572 >= 0.1000 removing height p = 0.1462 >= 0.1000 removing rv Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 3, 21) = 9.28 Model | 15294.4519 3 5098.15064 Prob > F = 0.0004 Residual | 11538.1881 21 549.437528 R-squared = 0.5700 -------------+------------------------------ Adj R-squared = 0.5086 Total | 26832.64 24 1118.02667 Root MSE = 23.44 ------------------------------------------------------------------------------ pemax | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- fev1 | 1.108629 .5143694 2.16 0.043 .0389396 2.178319 weight | 1.536475 .3644235 4.22 0.000 .7786149 2.294335 bmp | -1.465406 .5792906 -2.53 0.019 -2.670106 -.260705 _cons | 126.3336 34.71986 3.64 0.002 54.12965 198.5375 October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 Cautionary Notes The significance levels are not necessarily believable after variable selection The original full model F-statistic is significant, indicating that there is some significant relationship: F(9,15) = 2.93, p = 0.0320 After variable selection, F(3,21) = 9.28, p = 0.0004, which is biased. October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data set obs 25 generate x1 = invnormal(uniform()) generate x2 = invnormal(uniform()) generate x3 = invnormal(uniform()) generate x4 = invnormal(uniform()) generate x5 = invnormal(uniform()) generate x6 = invnormal(uniform()) generate x7 = invnormal(uniform()) generate x8 = invnormal(uniform()) generate x9 = invnormal(uniform()) generate y = invnormal(uniform()) regress y x1 x2 x3 x4 x5 x6 x7 x8 x9 stepwise, pr(.1): regress y x1 x2 x3 x4 x5 x6 x7 x8 x9 5/25/2019 October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 . regress y x1 x2 x3 x4 x5 x6 x7 x8 x9 Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 9, 15) = 0.91 Model | 12.3235639 9 1.36928488 Prob > F = 0.5397 Residual | 22.5105993 15 1.50070662 R-squared = 0.3538 -------------+------------------------------ Adj R-squared = -0.0340 Total | 34.8341632 24 1.45142347 Root MSE = 1.225 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- x1 | -.0441858 .2998066 -0.15 0.885 -.6832085 .594837 x2 | -.9078136 .4347798 -2.09 0.054 -1.834525 .0188976 x3 | .2076754 .3789522 0.55 0.592 -.6000421 1.015393 x4 | -.0056383 .3319125 -0.02 0.987 -.7130931 .7018166 x5 | -.330546 .3854497 -0.86 0.405 -1.152113 .4910207 x6 | .0202964 .3470704 0.06 0.954 -.7194666 .7600594 x7 | -.073401 .3135234 -0.23 0.818 -.7416603 .5948583 x8 | -.0552909 .3026913 -0.18 0.858 -.7004621 .5898803 x9 | -.3190092 .3137931 -1.02 0.325 -.9878434 .349825 _cons | -.2490392 .3078424 -0.81 0.431 -.9051898 .4071113 October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data

EPP 245 Statistical Analysis of Laboratory Data 5/25/2019 . stepwise, pr(.1): regress y x1 x2 x3 x4 x5 x6 x7 x8 x9 begin with full model p = 0.9867 >= 0.1000 removing x4 p = 0.9545 >= 0.1000 removing x6 p = 0.8456 >= 0.1000 removing x1 p = 0.8165 >= 0.1000 removing x7 p = 0.7506 >= 0.1000 removing x8 p = 0.5023 >= 0.1000 removing x3 p = 0.2866 >= 0.1000 removing x5 p = 0.2081 >= 0.1000 removing x9 Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 1, 23) = 7.23 Model | 8.33379862 1 8.33379862 Prob > F = 0.0131 Residual | 26.5003646 23 1.15218977 R-squared = 0.2392 -------------+------------------------------ Adj R-squared = 0.2062 Total | 34.8341632 24 1.45142347 Root MSE = 1.0734 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- x2 | -.6644002 .2470417 -2.69 0.013 -1.175445 -.1533555 _cons | -.1523124 .214703 -0.71 0.485 -.5964594 .2918346 October 25, 2007 EPP 245 Statistical Analysis of Laboratory Data