DNA Synthesis across an Abasic Lesion by Human DNA Polymerase ι

Slides:



Advertisements
Similar presentations
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Advertisements

Structure of the Rab7:REP-1 Complex
Volume 21, Issue 5, Pages (May 2013)
Volume 3, Issue 9, Pages (September 1995)
Transformation Efficiency of RasQ61 Mutants Linked to Structural Features of the Switch Regions in the Presence of Raf  Greg Buhrman, Glenna Wink, Carla.
Volume 124, Issue 2, Pages (January 2006)
Volume 13, Issue 11, Pages (November 2005)
Chromosomal DNA Replication on a Protein “Chip”
Structure of the Replicating Complex of a Pol α Family DNA Polymerase
The Closing Mechanism of DNA Polymerase I at Atomic Resolution
Volume 86, Issue 6, Pages (June 2004)
Volume 24, Issue 11, Pages (November 2016)
Volume 19, Issue 1, Pages (January 2011)
Volume 14, Issue 5, Pages (May 2007)
Volume 10, Issue 9, Pages (September 2017)
Volume 13, Issue 4, Pages (February 2004)
The Mechanism of E. coli RNA Polymerase Regulation by ppGpp Is Suggested by the Structure of their Complex  Yuhong Zuo, Yeming Wang, Thomas A. Steitz 
Volume 15, Issue 1, Pages (January 2007)
Structure of the E. coli DNA Glycosylase AlkA Bound to the Ends of Duplex DNA: A System for the Structure Determination of Lesion-Containing DNA  Brian.
Volume 26, Issue 3, Pages e3 (March 2018)
Volume 16, Issue 4, Pages (November 2004)
Rong Shi, Laura McDonald, Miroslaw Cygler, Irena Ekiel  Structure 
Structural Basis of DNA Loop Recognition by Endonuclease V
Ryan C. Wilson, Janice D. Pata  Molecular Cell 
Crystal Structures of Ral-GppNHp and Ral-GDP Reveal Two Binding Sites that Are Also Present in Ras and Rap  Nathan I. Nicely, Justin Kosak, Vesna de Serrano,
Olga Rechkoblit, James C. Delaney, John M. Essigmann, Dinshaw J. Patel 
Elif Eren, Megan Murphy, Jon Goguen, Bert van den Berg  Structure 
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 17, Issue 3, Pages (March 2009)
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Structure of the Yeast Hst2 Protein Deacetylase in Ternary Complex with 2′-O-Acetyl ADP Ribose and Histone Peptide  Kehao Zhao, Xiaomei Chai, Ronen Marmorstein 
Crystal Structure of a Y-Family DNA Polymerase in Action
Structural Basis for Substrate Selection by T7 RNA Polymerase
Crystal Structure of a DinB Lesion Bypass DNA Polymerase Catalytic Fragment Reveals a Classic Polymerase Catalytic Domain  Bo-Lu Zhou, Janice D. Pata,
Volume 26, Issue 3, Pages e3 (March 2018)
Volume 4, Issue 11, Pages (November 1996)
Volume 23, Issue 12, Pages (December 2015)
DNA Lesion Bypass Polymerases Open Up
Volume 90, Issue 1, Pages (July 1997)
Volume 17, Issue 5, Pages (May 2009)
Ryan C. Wilson, Meghan A. Jackson, Janice D. Pata  Structure 
Error-Prone DNA Polymerases
Elizabeth J. Little, Andrea C. Babic, Nancy C. Horton  Structure 
Volume 30, Issue 3, Pages (May 2008)
Volume 10, Issue 4, Pages (April 2002)
Crystal Structure of the Vanadate-Inhibited Ca2+-ATPase
Structural Insight into Translesion Synthesis by DNA Pol II
Crystal Structure of the p53 Core Domain Bound to a Full Consensus Site as a Self- Assembled Tetramer  Yongheng Chen, Raja Dey, Lin Chen  Structure  Volume.
Volume 23, Issue 1, Pages (January 2015)
Volume 17, Issue 10, Pages (October 2009)
Volume 15, Issue 11, Pages (November 2007)
An open and closed case for all polymerases
Volume 18, Issue 2, Pages (February 2010)
Structural Insight into Translesion Synthesis by DNA Pol II
Volume 13, Issue 10, Pages (October 2005)
Structural Insight into AMPK Regulation: ADP Comes into Play
Crystal Structures of the Thi-Box Riboswitch Bound to Thiamine Pyrophosphate Analogs Reveal Adaptive RNA-Small Molecule Recognition  Thomas E. Edwards,
Robert S. Magin, Glen P. Liszczak, Ronen Marmorstein  Structure 
Structure of BamHI Bound to Nonspecific DNA
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Volume 20, Issue 1, Pages (January 2012)
Egor Svidritskiy, Andrei A. Korostelev  Structure 
Yong Xiong, Fang Li, Jimin Wang, Alan M. Weiner, Thomas A. Steitz 
Volume 13, Issue 5, Pages (May 2005)
The Structure of T. aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases  Scott Bailey, Richard A. Wing, Thomas A. Steitz 
Petra Hänzelmann, Hermann Schindelin  Structure 
by Olga Rechkoblit, Yogesh K. Gupta, Radhika Malik, Kanagalaghatta R
Volume 25, Issue 4, Pages (February 2007)
Yogesh K. Gupta, Deepak T. Nair, Robin P. Wharton, Aneel K. Aggarwal 
Robert S. Magin, Glen P. Liszczak, Ronen Marmorstein  Structure 
Presentation transcript:

DNA Synthesis across an Abasic Lesion by Human DNA Polymerase ι Deepak T. Nair, Robert E. Johnson, Louise Prakash, Satya Prakash, Aneel K. Aggarwal  Structure  Volume 17, Issue 4, Pages 530-537 (April 2009) DOI: 10.1016/j.str.2009.02.015 Copyright © 2009 Elsevier Ltd Terms and Conditions

Figure 1 PolιAbasic.dNTP Ternary Complexes and Corresponding Simulated Annealed Omit Maps of the Incipient “Base Pairs” (A) PolιAbasic.dGTP ternary complex (left), shown for one of the two Polι molecules bound to a double-ended template primer. The palm, fingers, and thumb domains and the PAD in the Polι molecule are shown in cyan, yellow, orange, and green, respectively. DNA is shown in gray, abasic lesion and incoming dGTP are in red, and the putative Mg2+ ions are displayed as dark blue spheres. The simulated annealing Fo − Fc omit map (contoured at 3.0σ) for the abasic lesion and incoming dGTP is shown on the right. (B) PolιAbasic.dTTP ternary complex and corresponding simulated annealing Fo − Fc omit map. (C) PolιAbasic.dATP ternary complex and corresponding simulated annealing Fo − Fc omit map. Structure 2009 17, 530-537DOI: (10.1016/j.str.2009.02.015) Copyright © 2009 Elsevier Ltd Terms and Conditions

Figure 2 Active Sites (A) Close-up view of the PolιAbasic.dGTP ternary complex active site region. The coloring scheme is the same as in Figure 1. Highlighted and labeled are the catalytic residues (D34, D126, and E127) and some of the residues apposed close to the abasic lesion (Q59, K60, Y61, L62, S307, and R347) and incoming dNTP (Y39, V64, T65, K77, L78, Y68, R71, and K214). The water molecules that participate in forming water-mediated interactions are displayed as magenta spheres. (B) Close-up view of the PolιAbasic.dTTP ternary complex active site region. The putative Mg2+ ions (A and B) are shown as dark blue spheres. (C) Close-up view of the PolιAbasic.dATP ternary complex active site region. Structure 2009 17, 530-537DOI: (10.1016/j.str.2009.02.015) Copyright © 2009 Elsevier Ltd Terms and Conditions

Figure 3 Hydrogen-Bonding Networks (A) Hydrogen bonding between the dGTP base and polymerase in the PolιAbasic.dGTP ternary complex. The relevant DNA and protein residues are colored according to element, the water molecules are shown as red spheres, and the hydrogen bonds are displayed as dashed lines. (B) Hydrogen bonding between the dTTP base and polymerase in the PolιAbasic.dTTP ternary complex. (C) Hydrogen bonding between the dATP base and polymerase in the PolιAbasic.dATP ternary complex. Structure 2009 17, 530-537DOI: (10.1016/j.str.2009.02.015) Copyright © 2009 Elsevier Ltd Terms and Conditions

Figure 4 Comparison of Dpo4Abasic.dCTP and PolιAbasic.dTTP Ternary Complexes The protein surface is displayed in light blue (Dpo4) or cyan (Polι), DNA is shown in stick representation, and putative Mg2+ (Polι) or Ca2+ (Dpo4) ions are shown as dark blue spheres. The abasic site and the incoming dTTP (Polι) or dCTP (Dpo4) are colored in red. The nucleotide 5′ to the abasic site in the Dpo4 complex is colored in sky blue. The abasic site is extrahelical in the Dpo4 complex (Ling et al., 2004), but remains intrahelical in the Polι complex(es). Structure 2009 17, 530-537DOI: (10.1016/j.str.2009.02.015) Copyright © 2009 Elsevier Ltd Terms and Conditions