Cyclopentane Planar cyclopentane would have no angle strain but very high torsional strain Actual conformations of cyclopentane are nonplanar, reducing.

Slides:



Advertisements
Similar presentations
Newman Projections & Cycloalkane Structure
Advertisements

Two draw chair cyclohexanes, follow these steps: 1.) Draw the carbon chair.2.) Add the axial hydrogens. 3.) Draw the C1 and C4 equitorial hydrogens. 4.)
Molecules in Disguise Draw 5-propylheptane. What is its real name? 4-ethyloctane.
4. Organic Compounds: Cycloalkanes and their Stereochemistry
Chapter 7 Cyclic Compounds. Stereochemistry of Reactions.
Organic Chem I: lecture 9 by Doba Jackson, Ph.D.

3.4 The Shapes of Cycloalkanes: Planar or Nonplanar?
Dr. Wolf's CHM 201 & Chapter 3 Conformations of Alkanes and Cycloalkanes.
Chapter 4 Alkanes & Cycloalkane Conformations. Conformations of Alkanes: Rotation about Carbon–Carbon Bonds.
The properties of the cycloalkanes differ from those of their straight chain analogs. Cycloalkanes have higher boiling points, melting points, and densities.
1 Fall, 2009 Organic Chemistry I Cycloalkanes Organic Chemistry I Cycloalkanes Dr. Ralph C. Gatrone Department of Chemistry and Physics Virginia State.
Chapter 4 Alkanes: Nomenclature, Conformational Analysis, and an Introduction to Synthesis.
CHE 311 Organic Chemistry I Dr. Jerome K. Williams, Ph.D. Saint Leo University.
Drawing Cyclohexane and Decalins. parallel bonds Drawing Cyclohexane.
Chapter 3 Alkanes and Cycloalkanes: Conformations and cis-trans Stereoisomers 1.
Stereochemistry of Alkanes and Cycloalkanes Based on McMurry’s Organic Chemistry, 6 th edition, Chapter 4 ©2003 Ronald Kluger Department of Chemistry University.
Iran University of Science & Technology
Chapter 4 Organic Compounds: Cycloalkanes and Their Stereochemistry
STRUCTURE, CONTINUED Dr. Clower CHEM 2411 Spring 2014 McMurry (8 th ed.) sections , , 7.2, 7.6.
Section 2.7 Conformational Isomerism. Stereoisomerism- isomer variations in spatial or 3-D orientation of atoms. One type of stereoisomerism is conformational.
Chapter 3 Alkanes and Cycloalkanes: Conformations and cis-trans Stereoisomers Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction.
4. Organic Compounds: Cycloalkanes and their Stereochemistry Why this chapter? Because cyclic molecules are commonly encountered in all classes of biomolecules:
Conformational Analysis Newman Projections Ring Strain Cyclohexane Conformations.
Newman Projections and Conformational Isomers. Newman Projections Is a way to draw chemical conformations and views a carbon - carbon chemical bond from.
Conformations Staggered conformation: a conformation about a carbon-carbon single bond where the atoms on one carbon are as far apart from atoms on the.
Chapter 5: Rings. Ring Structures Remember that sp 3 carbon wants to be tetrahderal with 109.5° bond angles: When confined to a ring, bond angles are.
Conformations of Cycloalkanes. CycloalkanesCycloalkanes Most common cycloalkanesMost common cycloalkanes.
© Prentice Hall 2001Chapter 21 Conformations of Alkanes: Rotation about C-C Single Bonds Different spatial arrangements of atoms that result from rotation.
STEREOCHEMISTRY AND MOLECULAR MODELING OF CYCLOALKANES
Aliphatic cyclic compounds Islamic University of Gaza
Dr. Wolf's CHM 201 & Chapter 3 Conformations of Alkanes and Cycloalkanes.
1 CH 4: Organic Compounds: Cycloalkanes and their Stereochemistry Renee Y. Becker CHM 2210 Valencia Community College.
CH264 1 CH264/3 Organic Chemistry II Cyclohexane Rings Dr Andrew Marsh C515 Dr David J Fox B510
Sect 4.3: Conformations of Cycloalkanes. Small rings have two problems: ANGLE STRAIN A carbon with four bonds requires a tetrahedral hybrid with 109 o.
Cycloalkanes and their Stereochemistry Chapter 4.
Chapter 3 Conformations of Alkanes and Cycloalkanes Conformations or Conformers or Rotamers; Different spatial arrangements of a molecule that are generated.
CYCLOALKANES 1. 2 Cycloalkanes Cycloalkanes have molecular formula C n H 2n and contain carbon atoms arranged in a ring. Simple cycloalkanes are named.
CHEMISTRY 2500 Topic #4: Conformations of Organic Molecules Fall 2014 Dr. Susan Findlay.
Organic Compounds: Cycloalkanes and Their Stereochemistry
Heat of combustion suggests that angle strain is unimportant in cyclohexane tetrahedral bond angles require nonplanar geometries Conformations of Cyclohexane.
Lecture 3. Symmetry elements :. One example when C n is present but the molecule is chiral. The molecule is chiral.
4. Stereochemistry of Alkanes and Cycloalkanes Based on McMurry’s Organic Chemistry, 6 th edition, Chapter 4 ©2003 Ronald Kluger Department of Chemistry.
4. Stereochemistry of Alkanes and Cycloalkanes. 2 The Shapes of Molecules The three-dimensional shapes of molecules result from many forces There is free.
Chapter 3 Conformations of Alkanes and Cycloalkanes.
Chapter 4 Organic Compounds: Cycloalkanes and their Stereochemistry
Cycloalkanes Many organic compounds contain cyclic or ring structures:
Interlude 2: Shapes of Cyclic Molecules
Naming PHCM 331 – Organic and Medicinal/Pharmaceutical Chemistry I
Chapter 4 Organic Compounds: Cycloalkanes and their Stereochemistry
Molecular conformations
4. Organic Compounds: Cycloalkanes and their Stereochemistry
Stereochemistry of Organic Compounds
4. Organic Compounds: Cycloalkanes and their Stereochemistry
For cis-trans isomers to exist
Organic Compounds: Cycloalkanes and Their Stereochemistry
Chap. 2 Alkanes: Nomenclature, Conformational Analysis, and an Introduction to Synthesis (Textbook:Chapter 4)
CYCLOALKANES.
MOLECULAR CONFORMATION
Ring Strain = Angle Strain + Torsional Strain + Steric Strain
Chapter 5: Rings.
Chapter 4 Organic Compounds: Cycloalkanes and their Stereochemistry
3.9 Small Rings Cyclopropane Cyclobutane 25.
Page: 89.
Stereochemistry of Alkanes and Cycloalkanes
4. Organic Compounds: Cycloalkanes and their Stereochemistry
Alkanes and Cycloalkanes: Conformations and
Chemsketch files 1. Conformations of straight chain alkanes
Alkanes and Cycloalkanes
4. Organic Compounds: Cycloalkanes and their Stereochemistry
Presentation transcript:

Cyclopentane Planar cyclopentane would have no angle strain but very high torsional strain Actual conformations of cyclopentane are nonplanar, reducing torsional strain Four carbon atoms are in a plane The fifth carbon atom is above or below the plane – looks like an envelope

Relieve of torsional strain in cyclopentane Envelope (half chair) structure

Conformations of Cyclohexane Substituted cyclohexanes occur widely in nature The cyclohexane ring is free of angle strain and torsional strain The conformation is has alternating atoms in a common plane and tetrahedral angles between all carbons This is called a chair conformation

How to Draw Cyclohexane

Axial and Equatorial Bonds in Cyclohexane . Axial and Equatorial Bonds in Cyclohexane Chair cyclohexane has two types of hydrogens: axial: C-H axis is “perpendicular” to the “plane of the ring” equatorial: C-H axis is “parallel” to the “plane of the ring” Chair cyclohexane has two faces; each face has alternating axial and equatorial -H’s axial equatorial top face bottom face

Axial and Equatorial Positions Each carbon atom in cyclohexane has one axial and one equatorial hydrogen Each face of the ring has three axial and three equatorial hydrogens in an alternating arrangement

Drawing the Axial and Equatorial Hydrogens

Conformational Mobility of Cyclohexane Chair conformations readily interconvert, resulting in the exchange of axial and equatorial positions by a ring-flip

Bromocyclohexane When bromocyclohexane ring-flips the bromine’s position goes from equatorial to axial and so on

Conformations of Monosubstituted Cyclohexanes The two conformers of a monosubstituted cyclohexane are not equal in energy The equatorial conformer of methyl cyclohexane is more stable than the axial by 7.6 kJ/mol

Example

Boat conformation is less stable than the chair 180 pm All of the bond angles are close to tetrahedral but close contact between flagpole hydrogens causes van der Waals strain in boat. 6

Boat conformation is less stable than the chair Eclipsed bonds gives torsional strain to boat. 6

Conformations of cyclohexane