Nuclear Physics Group and IUFFyM University of Salamanca Charm spectroscopy beyond the constituent quark model Charm spectroscopy beyond the constituent quark model Francisco Fernandez Nuclear Physics Group and IUFFyM University of Salamanca
Do we need to go beyond the constituent quark model Charm spectroscopy beyond the constituent quark model Do we need to go beyond the constituent quark model to describe the open and hidden charm spectroscopy? - Constituent quark model - Beyond the constituent quark model - 1– hidden charm sector - Dsj - 3940 region
As a consecuence light constituent quarks exchange Goldstone bosons The constituent quark model Basic ingredients Chiral symmetry is spontaneously broken at some momentum scale provinding a constituent quark mass M(q2) for the ligth quarks As a consecuence light constituent quarks exchange Goldstone bosons Both light and heavy quarks interacts besides by gluon exchange Finally both type of quarks are confined by a two body linear potential screened at large distancies due to pair creation Diapositiva 4. SIMULTANEIDAD This model has been able to describe the NN interaction (NN phase shifts and deuteron phenomenology), the triton binding energy, baryon spectroscopy and meson spectroscopy and decays.
J. Vijande, F. Fernández, A. Valcarce. J. Phys. G31, (2005) The constituent quark model N-N interaction F. Fernández, A. Valcarce, U. Straub, A. Faessler. J. Phys. G19, 2013 (1993) A. Valcarce, A. Faessler, F. Fernández. Physics Letters B345, 367 (1995) D.R. Entem, F. Fernández, A. Valcarce. Phys. Rev. C62 034002 (2000) B. Juliá-Diaz, J. Haidenbauer, A. Valcarce, and F. Fernández. Physical Review C 65, 034001, (2002) Baryon spectrum H. Garcilazo, A. Valcarce, F. Fernández. Phys. Rev. C 64, 058201, (2001) H. Garcilazo, A. Valcarce, F. Fernández. Phys. Rev. C 63, 035207 (2001) Meson spectrum. L.A. Blanco, F. Fernández, A. Valcarce. Phys. Rev. C59, 428 (1999) J. Vijande, F. Fernández, A. Valcarce. J. Phys. G31, (2005) J. Vijande, F. Fernández, A. Valcarce. J. Phys. G31, (2005) Diapositiva 4. SIMULTANEIDAD This model has been able to describe the NN interaction (NN phase shifts and deuteron phenomenology), the triton binding energy, baryon spectroscopy and meson spectroscopy and decays.
The constituent quark model Light I=1
The constituent quark model Bottomonium
The constituent quark model
The constituent quark model
Molecules and tetraquarks Beyond the constituent quark model Molecules and tetraquarks Why four quarks configuration? L=1 qq Jπ=0+,1+ P( s )=-1 − → qqqq L=0 P(qq)=+1
The 1-- sector The 1-- sector
The 1-- sector Strong widths 3P0 model Leptonic width
Dsj(2860) Dsj(2860)
No structures seen in D*K Dsj(2860) New States - DsJ(2860)+ Combined modes bkgd subtracted Ds2573)+ D0 K-p+ D0 K-p+ p0 D+ K-p+p+ DsJ(2860)+ → No structures seen in D*K BaBar data PRL 97 (2006)
Dsj(2860) → →
← Dsj(2860) multiquark 2P state Γ[DsJ(2860)0+ → Ds*γ] = 13.7 keV Γ[DsJ(2860)0+ → Ds*γ] = 1.8 eV multiquark 2P state
X(3872) X(3940) Y(3940) Z(3930) X(4160)
D*reconstructed D*tag X(4160) e+e− J/ D*D* M=(4156 15)MeV/c2 =(139 21)MeV +25 −20 +111 −61 5.5 X(4160) D*reconstructed D*tag M=4166 MeV/c2 =122.9 MeV Our results ((D*D*) =52.3 MeV)
X(3872) X(3940) Y(3940) Z(3930)
Z(3940) Our results Observed in 2005 by Belle Collab. produced in PRL 96 (06) 082003 Helicity angle distribution favours J=2 Our results M=3968 MeV. =49.1 MeV.
X(3872) X(3940) Y(3940)
Tetraquarks? Molecules? X(3872) X(3940) Y(3940) X(3940) Y(3940) X(3872) Candidate No candidate No candidate Tetraquarks? Molecules?
X(3872) X(3940) Y(3940) ► ► No tensor forces ►
SUMMARY ► Y(4360 ) and Y(4660) are 1-- states ► Z(3960) and X(4160) can be identified as the and the respectively ► Dsj(2860) has a sizeable tetraquark component ► We need to go beyond the constituent quark model to describe the rest of states