EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2003

Slides:



Advertisements
Similar presentations
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
Advertisements

EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
L06 31Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 6-Spring 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
L04,... June 11,...1 Electronics I EE 2303/602 - Summer ‘01 Lectures 04,... Professor Ronald L. Carter
Lecture 12 OUTLINE pn Junction Diodes (cont’d) Junction breakdown
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
ECE 333 Linear Electronics
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Professor Ronald L. Carter
P-N Junctions ECE 663.
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
Depletion Region ECE 2204.
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2010
Lecture 5 OUTLINE PN Junction Diodes I/V Capacitance Reverse Breakdown
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
EE130/230A Discussion 5 Peng Zheng.
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2009
Professor Ronald L. Carter
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
pn Junction Electrostatics
PN Junction Electrostatics
pn Junction Electrostatics
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2003
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Professor Ronald L. Carter
Lecture 12 OUTLINE pn Junction Diodes (cont’d) Junction breakdown
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 16 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2003
ECE 340 Lecture 23 Current Flow in P-N diode
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Professor Ronald L. Carter
Chapter 3 Solid-State Diodes and Diode Circuits
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2003
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2003 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc L 11 Sept 30

Band diagram for p+-n jctn* at Va = 0 Ec qVbi = q(fn - fp) qfp < 0 EFi Ec EFP EFN Ev EFi qfn > 0 *Na > Nd -> |fp| > fn Ev p-type for x<0 n-type for x>0 x -xpc -xp xn xnc L 11 Sept 30

Band diagram for p+-n jctn* at Va  0 Ec q(Va) q(Vbi-Va) qfp < 0 EFi Ec EFP EFN Ev EFi qfn > 0 *Na > Nd -> |fp| > fn Ev p-type for x<0 n-type for x>0 x -xpc -xp xn xnc L 11 Sept 30

Charge neutrality => Qp’ + Qn’ = 0, => Naxp = Ndxn Junction C (cont.) r +Qn’=qNdxn +qNd dQn’=qNddxn -xp x -xpc xn xnc -qNa Charge neutrality => Qp’ + Qn’ = 0, => Naxp = Ndxn dQp’=-qNadxp Qp’=-qNaxp L 11 Sept 30

Depletion Approxi- mation (Summary) For the step junction defined by doping Na (p-type) for x < 0 and Nd, (n-type) for x > 0, the depletion width W = {2e(Vbi-Va)/qNeff}1/2, where Vbi = Vt ln{NaNd/ni2}, and Neff=NaNd/(Na+Nd). Since Naxp=Ndxn, xn = W/(1 + Nd/Na), and xp = W/(1 + Na/Nd). L 11 Sept 30

Soln to Poisson’s Eq in the D.R. Ex W(Va-dV) W(Va) -xp xn x -xpc xnc -Emax(V) -Emax(V-dV) L 11 Sept 30

Effect of V  0 L 11 Sept 30

Junction Capacitance The junction has +Q’n=qNdxn (exposed donors), and (exposed acceptors) Q’p=-qNaxp = -Q’n, forming a parallel sheet charge capacitor. L 11 Sept 30

Junction C (cont.) This Q ~ (Vbi-Va)1/2 is clearly non-linear, and Q is not zero at Va = 0. Redefining the capacitance, L 11 Sept 30

Junction C (cont.) If one plots [Cj]-2 vs. Va Slope = -[(Cj0)2Vbi]-1 vertical axis intercept = [Cj0]-2 horizontal axis intercept = Vbi Cj-2 Vbi Va Cj0-2 L 11 Sept 30

Junction Capacitance Estimate CJO Define y  Cj/CJO Calculate y/(dy/dV) = {d[ln(y)]/dV}-1 A plot of r  y/(dy/dV) vs. V has slope = -1/M, and intercept = VJ/M L 11 Sept 30

dy/dx - Numerical Differentiation L 11 Sept 30

Practical Junctions Junctions are formed by diffusion or implantation into a uniform concentration wafer. The profile can be approximated by a step or linear function in the region of the junction. If a step, then previous models OK. If linear, let the local charge density r=qax in the region of the junction. L 11 Sept 30

Practical Jctns (cont.) Na(x) N N Shallow (steep) implant Na(x) Linear approx. Box or step junction approx. Nd Nd Uniform wafer con x (depth) x (depth) xj L 11 Sept 30

Linear graded junction Let the net donor concentration, N(x) = Nd(x) - Na(x) = ax, so r =qax, -xp < x < xn = xp = xo, (chg neu) r = qa x r Q’n=qaxo2/2 -xo x xo Q’p=-qaxo2/2 L 11 Sept 30

Linear graded junction (cont.) Let Ex(-xo) = 0, since this is the edge of the DR (also true at +xo) L 11 Sept 30

Linear graded junction (cont.) Ex -xo xo x -Emax |area| = Vbi-Va L 11 Sept 30

Linear graded junction (cont.) L 11 Sept 30

Linear graded junction, etc. L 11 Sept 30

Doping Profile If the net donor conc, N = N(x), then at x, the extra charge put into the DR when Va->Va+dVa is dQ’=-qN(x)dx The increase in field, dEx =-(qN/e)dx, by Gauss’ Law (at x, but also all DR). So dVa=-xddEx= (W/e) dQ’ Further, since qN(x)dx, for both xn and xn, we have the dC/dx as ... L 11 Sept 30

Arbitrary doping profile (cont.) L 11 Sept 30

Arbitrary doping profile (cont.) L 11 Sept 30

Arbitrary doping profile (cont.) L 11 Sept 30

Arbitrary doping profile (cont.) L 11 Sept 30

Example An assymetrical p+ n junction has a lightly doped concentration of 1E16 and with p+ = 1E18. What is W(V=0)? Vbi=0.816 V, Neff=9.9E15, W=0.33mm What is C’j0? = 31.9 nFd/cm2 What is LD? = 0.04 mm L 11 Sept 30

Reverse bias junction breakdown Avalanche breakdown Electric field accelerates electrons to sufficient energy to initiate multiplication of impact ionization of valence bonding electrons field dependence shown on next slide Heavily doped narrow junction will allow tunneling - see Neamen*, p. 274 Zener breakdown L 11 Sept 30

Effect of V  0 L 11 Sept 30

Ecrit for reverse breakdown (M&K**) Taken from p. 198, M&K** L 11 Sept 30

Reverse bias junction breakdown Assume -Va = VR >> Vbi, so Vbi-Va-->VR Since Emax~ 2VR/W = (2qN-VR/(e))1/2, and VR = BV when Emax = Ecrit (N- is doping of lightly doped side ~ Neff) BV = e (Ecrit )2/(2qN-) Remember, this is a 1-dim calculation L 11 Sept 30

Junction curvature effect on breakdown The field due to a sphere, R, with charge, Q is Er = Q/(4per2) for (r > R) V(R) = Q/(4peR), (V at the surface) So, for constant potential, V, the field, Er(R) = V/R (E field at surface increases for smaller spheres) Note: corners of a jctn of depth xj are like 1/8 spheres of radius ~ xj L 11 Sept 30

BV for reverse breakdown (M&K**) Taken from Figure 4.13, p. 198, M&K** Breakdown voltage of a one-sided, plan, silicon step junction showing the effect of junction curvature.4,5 L 11 Sept 30

References * Semiconductor Physics and Devices, 2nd ed., by Neamen, Irwin, Boston, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Muller and Kamins, Wiley, New York, 1986. L 11 Sept 30