Introduction to bioinformatics Lecture 8

Slides:



Advertisements
Similar presentations
Blast to Psi-Blast Blast makes use of Scoring Matrix derived from large number of proteins. What if you want to find homologs based upon a specific gene.
Advertisements

Introduction to Bioinformatics
A Hidden Markov Model for Progressive Multiple Alignment Ari Löytynoja and Michel C. Milinkovitch Appeared in BioInformatics, Vol 19, no.12, 2003 Presented.
Multiple alignment: heuristics. Consider aligning the following 4 protein sequences S1 = AQPILLLV S2 = ALRLL S3 = AKILLL S4 = CPPVLILV Next consider the.
. Class 5: Multiple Sequence Alignment. Multiple sequence alignment VTISCTGSSSNIGAG-NHVKWYQQLPG VTISCTGTSSNIGS--ITVNWYQQLPG LRLSCSSSGFIFSS--YAMYWVRQAPG.
Sequence analysis lecture 6 Sequence analysis course Lecture 6 Multiple sequence alignment 2 of 3 Multiple alignment methods.
Sequence analysis course Lecture 7 Multiple sequence alignment 3 of 3 Optimizing progressive multiple alignment methods.
Progressive MSA Do pair-wise alignment Develop an evolutionary tree Most closely related sequences are then aligned, then more distant are added. Genetic.
Multiple Sequence Alignment Algorithms in Computational Biology Spring 2006 Most of the slides were created by Dan Geiger and Ydo Wexler and edited by.
Multiple alignment June 29, 2007 Learning objectives- Review sequence alignment answer and answer questions you may have. Understand how the E value may.
What you should know by now Concepts: Pairwise alignment Global, semi-global and local alignment Dynamic programming Sequence similarity (Sum-of-Pairs)
C E N T R F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U E Lecture 6 – 07/01/08 Multiple sequence alignment 2 Sequence analysis 2007 Optimizing.
Multiple alignment: heuristics
Multiple sequence alignment
Sequence Alignment III CIS 667 February 10, 2004.
1-month Practical Course Genome Analysis Lecture 3: Residue exchange matrices Centre for Integrative Bioinformatics VU (IBIVU) Vrije Universiteit Amsterdam.
Bioinformatics Unit 1: Data Bases and Alignments Lecture 3: “Homology” Searches and Sequence Alignments (cont.) The Mechanics of Alignments.
Alignment IV BLOSUM Matrices. 2 BLOSUM matrices Blocks Substitution Matrix. Scores for each position are obtained frequencies of substitutions in blocks.
Multiple Sequence Alignments
1-month Practical Course Genome Analysis Lecture 5: Multiple Sequence Alignment Centre for Integrative Bioinformatics VU (IBIVU) Vrije Universiteit Amsterdam.
C E N T R F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U E Lecture 6 – 16/11/06 Multiple sequence alignment 1 Sequence analysis 2006 Multiple.
CISC667, F05, Lec8, Liao CISC 667 Intro to Bioinformatics (Fall 2005) Multiple Sequence Alignment Scoring Dynamic Programming algorithms Heuristic algorithms.
Introduction to Bioinformatics From Pairwise to Multiple Alignment.
Chapter 5 Multiple Sequence Alignment.
Multiple sequence alignment
Biology 4900 Biocomputing.
Practical multiple sequence algorithms Sushmita Roy BMI/CS 576 Sushmita Roy Sep 24th, 2013.
Pair-wise alignment quality versus sequence identity (Vogt et al., JMB 249, ,1995)
Multiple Sequence Alignment May 12, 2009 Announcements Quiz #2 return (average 30) Hand in homework #7 Learning objectives-Understand ClustalW Homework#8-Due.
Protein Sequence Alignment and Database Searching.
Pairwise Sequence Alignment. The most important class of bioinformatics tools – pairwise alignment of DNA and protein seqs. alignment 1alignment 2 Seq.
Applied Bioinformatics Week 8 Jens Allmer. Practice I.
Multiple Sequence Alignments Craig A. Struble, Ph.D. Department of Mathematics, Statistics, and Computer Science Marquette University.
Construction of Substitution Matrices
Bioinformatics Multiple Alignment. Overview Introduction Multiple Alignments Global multiple alignment –Introduction –Scoring –Algorithms.
Multiple alignment: Feng- Doolittle algorithm. Why multiple alignments? Alignment of more than two sequences Usually gives better information about conserved.
Sequence Alignment Csc 487/687 Computing for bioinformatics.
Copyright OpenHelix. No use or reproduction without express written consent1.
MUSCLE An Attractive MSA Application. Overview Some background on the MUSCLE software. The innovations and improvements of MUSCLE. The MUSCLE algorithm.
Multiple Alignment and Phylogenetic Trees Csc 487/687 Computing for Bioinformatics.
Medical Natural Sciences Year 2: Introduction to Bioinformatics Lecture 9: Multiple sequence alignment (III) Centre for Integrative Bioinformatics VU.
Doug Raiford Lesson 5.  Dynamic programming methods  Needleman-Wunsch (global alignment)  Smith-Waterman (local alignment)  BLAST Fixed: best Linear:
Construction of Substitution matrices
Introduction to bioinformatics Lecture 7 Multiple sequence alignment (1)
V diagonal lines give equivalent residues ILS TRIVHVNSILPSTN V I L S T R I V I L P E F S T Sequence A Sequence B Dot Plots, Path Matrices, Score Matrices.
V diagonal lines give equivalent residues ILS TRIVHVNSILPSTN V I L S T R I V I L P E F S T Sequence A Sequence B Dot Plots, Path Matrices, Score Matrices.
Multiple Sequence Alignment (cont.) (Lecture for CS397-CXZ Algorithms in Bioinformatics) Feb. 13, 2004 ChengXiang Zhai Department of Computer Science University.
Introduction to bioinformatics lecture 8
Techniques for Protein Sequence Alignment and Database Searching G P S Raghava Scientist & Head Bioinformatics Centre, Institute of Microbial Technology,
Substitution Matrices and Alignment Statistics BMI/CS 776 Mark Craven February 2002.
Multiple Sequence Alignment Dr. Urmila Kulkarni-Kale Bioinformatics Centre University of Pune
Pairwise alignment Now we know how to do it: How do we get a multiple alignment (three or more sequences)? Multiple alignment: much greater combinatorial.
9/6/07BCB 444/544 F07 ISU Dobbs - Lab 3 - BLAST1 BCB 444/544 Lab 3 BLAST Scoring Matrices & Alignment Statistics Sept6.
Multiple sequence alignment (msa)
The ideal approach is simultaneous alignment and tree estimation.
Rules of thumb when looking at a multiple alignment (MA)
Introduction to bioinformatics 2008 Lecture 8
LSM3241: Bioinformatics and Biocomputing Lecture 4: Sequence analysis methods revisited Prof. Chen Yu Zong Tel:
Multiple Sequence Alignment
Introduction to bioinformatics 2007 Lecture 10
In Bioinformatics use a computational method - Dynamic Programming.
1-month Practical Course
Homology modelling by distance geometry
Multiple Sequence Alignment
Introduction to bioinformatics 2007 Lecture 9
Alignment IV BLOSUM Matrices
Introduction to bioinformatics lecture 9
1-month Practical Course
Multiple Sequence Alignment
Presentation transcript:

Introduction to bioinformatics Lecture 8 Multiple sequence alignment (2)

Flavodoxin-cheY: Pre-processing (prepro1500)

Progressive multiple alignment general principles 1 Score 1-2 2 1 Score 1-3 3 4 Score 4-5 5 Scores Similarity matrix 5×5 Scores to distances Iteration possibilities Guide tree Multiple alignment

General progressive multiple alignment technique (follow generated tree) 1 3 1 3 2 5 1 3 2 5 root 1 3 2 5 4

Progressive multiple alignment Problem: Accuracy is very important Errors are propagated through the progressive steps “Once a gap, always a gap” Feng & Doolittle, 1987

How to represent a block of sequences Historically: consensus sequence - single sequence that best represents the amino acids observed at each alignment position Modern methods: Alignment profile – representation that retains the information about frequencies of amino acids observed at each alignment position

Multiple alignment profiles Gribskov et al. 1987 C D  W Y 0.3 0.1  Gap penalties 1.0 0.5 Position dependent gap penalties

Profile-sequence alignment ACD……VWY

Sequence to profile alignment V L 0.4 A 0.2 L 0.4 V Score of amino acid L in sequence that is aligned against this profile position: Score = 0.4 * s(L, A) + 0.2 * s(L, L) + 0.4 * s(L, V)

Profile-profile alignment C D . Y profile ACD……VWY

Profile to profile alignment V L G S 0.4 A 0.2 L 0.4 V 0.75 G 0.25 S Match score of these two alignment columns using the a.a frequencies at the corresponding profile positions: Score = 0.4*0.75*s(A,G) + 0.2*0.75*s(L,G) + 0.4*0.75*s(V,G) + + 0.4*0.25*s(A,S) + 0.2*0.25*s(L,S) + 0.4*0.25*s(V,S) s(x,y) is value in amino acid exchange matrix (e.g. PAM250, Blosum62) for amino acid pair (x,y)

Clustal, ClustalW, ClustalX CLUSTAL W/X (Thompson et al., 1994) uses Neighbour Joining (NJ) algorithm (Saitou and Nei, 1984), widely used in phylogenetic analysis, to construct guide tree (see Lecture 4). Sequence blocks are represented by profiles, in which the individual sequences are additionally weighted according to the branch lengths in the NJ tree. Further carefully crafted heuristics include: (i) local gap penalties (ii) automatic selection of the amino acid substitution matrix, (iii) automatic gap penalty adjustment (iv) mechanism to delay alignment of sequences that appear to be distant at the time they are considered CLUSTAL (W/X) does not allow iteration

Strategies for multiple sequence alignment Profile pre-processing Secondary structure-induced alignment Globalised local alignment Matrix extension Objective: try to avoid (early) errors

Profile pre-processing 1 Score 1-2 2 1 Score 1-3 3 4 5 Score 4-5 1 Key Sequence 2 1 3 Pre-alignment 4 5 Master-slave (N-to-1) alignment A C D . Y 1 Pre-profile Pi Px

Pre-profile generation 1 Score 1-2 2 1 Score 1-3 3 4 Score 4-5 5 Cut-off Pre-alignments Pre-profiles 1 1 A C D . Y 2 3 4 5 2 2 A C D . Y 1 3 4 5 5 A C D . Y 5 1 2 3 4

Profile pre-processing 1 Score 1-2 2 1 Score 1-3 3 4 5 Score 4-5 Pre-alignments Pre-profiles 1 1 A C D . Y 2 3 4 5 2 2 A C D . Y 1 3 4 5 5 A C D . Y 5 1 2 3 4

Pre-profile alignment Pre-profiles 1 A C D . Y 2 A C D . Y Final alignment 3 A C D . Y 1 2 3 4 5 4 A C D . Y 5 A C D . Y

Pre-profile alignment 1 1 2 3 4 5 2 2 1 3 4 Final alignment 5 3 3 1 1 2 2 4 3 5 4 4 5 4 1 2 3 5 5 5 1 2 3 4

Pre-profile alignment Alignment consistency Ala131 1 1 1 2 3 A131 L133 C126 4 5 2 2 1 2 3 4 5 3 3 1 2 4 5 4 4 1 2 5 3 5 5 5 1 2 3 4

PRALINE pre-profile generation Idea: use the information from all query sequences to make a pre-profile for each query sequence that contains information from other sequences You can use all sequences in each pre-profile, or use only those sequences that will probably align ‘correctly’. Incorrectly aligned sequences in the pre-profiles will increase the noise level. Select using alignment score: only allow sequences in pre-profiles if their alignment with the score higher than a given threshold value. In PRALINE, this threshold is given as prepro=1500 (alignment score threshold value is 1500 – see next two slides)

Flavodoxin-cheY consistency scores (PRALINE prepro=0) 1fx1 --7899999999999TEYTAETIARQL8776-6657777777777777553799VL999ST97775599989-435566677798998878AQGRKVACF FLAV_DESVH -46788999999999TEYTAETIAREL7777-7757777777777777553799VL999ST97775599989-435566677798998878AQGRKVACF FLAV_DESDE -47899999999999999999999988776695658888777777778763YDAVL999SAW9877789877753556666669777776789GRKVAAF FLAV_DESGI -46788999999999TEGVAEAIAKTL9997-76678888777777887539DVVL999ST987776--9889546667776697776557777888888 FLAV_DESSA 93677799999999999999999999988759765777888888888876399999999STW77765--9999536666677797998779999999999 4fxn -878779999999999999999999776666967567788888888888777999999988777776--9889577788888897773237888888888 FLAV_MEGEL 9776779999999999999999997777766-665666677788899976799999999987777669--887362334466695555455778888888 2fcr --87899999999999TEVADFIGK996541900300000112233355679DLLF99999855312888111224555555407777777888888888 FLAV_ANASP -47899LFYGTQTGKTESVAEIIR9777653922356677777777897779999999999988843--9998555778777899998879999999999 FLAV_ECOLI 997789999GSDTGNTENIAKMIQ8774222922456678889999995569999999999755553----99262225555495777767778999999 FLAV_AZOVI --79IGLFFGSNTGKTRKVAKSIK99887759657577888888999777899999999999877761112222222244555-5555555778999999 FLAV_ENTAG 94789999999999999999999998755229223234555555555555688899999998875521111111133477777-7777777999999999 FLAV_CLOAB -86999ILYSSKTGKTERVAK9997555555057678887888887777765778899998522223--9888342234455597777777777777777 3chy 0122222223333335666665555555222922222222222221112163335555755553222888877674533344493332222222222222 Avrg Consist 8667778888888889999999998776554844455566666666665557888888888766544887666334445566586666556778888888 Conservation 0125538675848969746963946463343045244355446543473516658868567554455000000314365446505575435547747759 1fx1 G888799955555559888888888899777----7777797787787978---555555566776555677777778888799------ FLAV_DESVH G888799955555559888888888899777----7777797787787978---555555566776555677777778888799------ FLAV_DESDE A88878685555555999988888889998879--8777788-98777777--8555555554433245667777777777599------ FLAV_DESGI 87775977755555677777777777777778---88888887667778777775555555555542424667888887777-------- FLAV_DESSA 977768777555556777777777777777767887777777778888-978985555555556536556888888888877-------- 4fxn 867777555555552666666666555555577887767999877777977777665555555555444466666666555798------ FLAV_MEGEL 8577775666666525556777778888888689977888988776558677885544333222222212233223355557-------- 2fcr 877773573333333777766667777765533333333333333322833333333332244444567777777888777633------ FLAV_ANASP 977773775333344777888888777777733334444444444433833333344444444444455577777788777734------ FLAV_ECOLI 977743786444444777788888888888833334444444444444244444555554555775667788888888877734110000 FLAV_AZOVI 97776355333333466666667777777773333444444444444482333355555555555545558888888877772311---- FLAV_ENTAG 977773886555555866666666677666633333333333333322123333344444444455555665566666555582------ FLAV_CLOAB 766627222222212444444444455555587882222222222222111111122222222222344443333333233399------ 3chy 222227222222224111355431113324578-87778997666556877776322222222222322222323344444422------ Avrg Consist 866656564444444666666666666666656665555565555555655565444443444443344455666666666666889999 Conservation 73663057433334163464534444*746710000011010011000000010434744645443225474454448434301000000 Iteration 0 SP= 135136.00 AvSP= 10.473 SId= 3838 AvSId= 0.297 Consistency values are scored from 0 to 10; the value 10 is represented by the corresponding amino acid (red)

Flavodoxin-cheY consistency scores (PRALINE prepro=1500) 1fx1 -42444IVYGSTTGNTEYTAETIARQL886666666577777775667888DLVLLGCSTW77766----995476666769-77888788AQGRKVACF FLAV_DESVH -34444IVYGSTTGNTEYTAETIAREL776666666577777775667888DLVLLGCSTW77766----995476666769-77888788AQGRKVACF FLAV_DESSA -33444IVYGSTTGNTET99999888777655777668888899666686YDIVLFGCSTW77777----996466666779-88SL98ADLKGKKVSVF FLAV_DESGI -34444IVYGSTTGNTEGVA9999999999765555677777886666678DVVLLGCSTW77777----995466666779-88887688888KKVGVF FLAV_DESDE -44777IVFGSSTGNTE988777666655566777778899999777777YDAVLFGCSAW88877----997587777779-8887766777GRKVAAF 4fxn -32222IVYWSGTGNTE8888888876666778888888888NI8888586DILILGCSA888888------8-8888886--66665378ISGKKVALF FLAV_MEGEL -12222IVYWSGTGNTEAMA8888888888888888555555555555485DVILLGCPAMGSE77------572222288--8888755588GKKVGLF 2fcr -41456IFFSTSTGNTTEVA999998865432222765554443244779YDLLFLGAPT944411999-111112454441-8DKLPEVDMKDLPVAIF FLAV_ANASP -00456LFYGTQTGKTESVAEII987755323322427776666623589YQYLIIGCPTW55532--999843678W988899998888888GKLVAYF FLAV_AZOVI -42445LFFGSNTGKTRKVAKSIK87777434333536666665467777YQFLILGTPTLGEG862222222222355558-45666666888KTVALF FLAV_ENTAG -266IGIFFGSDTGQTRKVAKLIHQKL6664664424DVRRATR88888SYPVLLLGTPT88888644444444446WQEF8-8NTLSEADLTGKTVALF FLAV_ECOLI -51114IFFGSDTGNTENIAKMI987743311111555555588355599YDILLLGIPT954431----88355225544--44666666779KLVALF FLAV_CLOAB -63666ILYSSKTGKTERVAKLIE63333333333333333333366LQESEGIIFGTPTY63--6--------66SWE33333333333333GKLGAAF 3chy ADKELKFLVVDDFSTMRRIVRNLLKELGFNNVEEAEDGVDALNKLQ-AGGYGFVI---SDWNMPNM----------DGLEL--LKTIRADGAMSALPVLM Avrg Consist 9334459999999999999999988776655555555666667756667889999999999767658888775555566668967777677889999999 Conservation 0236428675848969746963946463344354312564565414344366588685675544550000003144654460055575345547747759 1fx1 G98879-89-999877977--7788899999999955--88888-9988887798999777778766553344588776666222266899899 FLAV_DESVH G98879-89-999877977--7788899999999955--88888-9988887798999777778766553344588776666222266899899 FLAV_DESSA G98878-688688888-88--88999999999999979988888887788889-89-9787777666756645577776666654466899899 FLAV_DESGI G98879-898688888987--788888999GATLV7698899-9998789888-8899787878776663122477788888333276899899 FLAV_DESDE AS8888-68-888888899--9999999999988888-99988888988778897888776668854222212255555555333277999999 4fxn GS2228-228222222222--2388888888888888888888888888888888888887778866765535577555533221288888888 FLAV_MEGEL G4888--28-8888882MD--AWKQRTEDTGATVI77---------------------77222--224444222222244222112-------- 2fcr GLGDA5-8Y5DNFC88-88--8877777777777765444555555555544385555777774465333357799999987555333899899 FLAV_ANASP GTGDQ5-GY5899999-99--99EEKISQRGG99975555544444444433284444466665555555556666676666433333899899 FLAV_AZOVI GLGDQ5-885777555-55--55555788888888555555555555555554855555555555666555555888855555544442--288 FLAV_ENTAG GLGDQL-NYSKNFVSA-MR--ILYDLVIARGACVVG8888EGYKFSFSAA6664NEFVGLPLDQEN88888EERIDSWLE88842242688688 FLAV_ECOLI GC99549784688888987997777777778888855444444444444444114444777774455775567788888887433322100100 FLAV_CLOAB STANS6366663333333333336666666666666666663333363366336663333336EDENARIFGERIANKVKQI333333666666 3chy VTAEA---KKENIIAA-----------AQAGAS-------------------------GYVVK-----PFTAATLEEKLNKIFEKLGM------ Avrg Consist 9988779787777777777997788888888888866777777777767766677777676667766655455577776666433355788788 Conservation 746640037154545706300354534444*745753000001010010000000010683760144442335574454448434301000000 Iteration 0 SP= 136702.00 AvSP= 10.654 SId= 3955 AvSId= 0.308 Consistency values are scored from 0 to 10; the value 10 is represented by the corresponding amino acid (red)

Iteration Alignment iteration: do an alignment learn from it do it better next time Bootstrapping

Consistency iteration Pre-profiles Multiple alignment positional consistency scores The consistency weights in the multiple alignment for each sequence are copied into a vector for each sequence (red-black vectors above each pre-profile) and used as weights in the DP runs for aligning sequences and sequence blocks to make a new (and hopefully better) multiple sequence alignment.

Pre-profile update iteration Pre-profiles Multiple alignment The sequences as aligned in the multiple alignment are copied into the pre-profiles for each sequence. This changes the matching in the master-slave alignment (pre-alignment) and leads to different pre-profiles for the next iteration, which in turn will lead to a different (and hopefully better) MSA.

Iteration: three different scenarios Convergence Limit cycle Divergence A computer program should check whether iteration reaches Convergence or Limit cycle states. To deal with Divergence, often a maximum number of iterations is specified to limit computation times.