Differential equations

Slides:



Advertisements
Similar presentations
Prof. Muhammad Saeed ( Ordinary Differential Equations )
Advertisements

Ordinary Differential Equations
Chapter 6 Differential Equations
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L8&9 KFUPM.
ORDINARY DIFFERENTIAL EQUATIONS (ODE)
HAMPIRAN NUMERIK SOLUSI PERSAMAAN DIFERENSIAL (lanjutan) Pertemuan 12 Matakuliah: METODE NUMERIK I Tahun: 2008.
Numeriska beräkningar i Naturvetenskap och Teknik 1. Numerical differentiation and quadrature Discrete differentiation and integration Trapezoidal and.
Ordinary Differential Equations
PART 7 Ordinary Differential Equations ODEs
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Ordinary Differential Equations Equations which are.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 32 Ordinary Differential Equations.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 31 Ordinary Differential Equations.
Initial-Value Problems
Dr. Jie Zou PHY Chapter 9 Ordinary Differential Equations: Initial-Value Problems Lecture (II) 1 1 Besides the main textbook, also see Ref.: “Applied.
8-1 Chapter 8 Differential Equations An equation that defines a relationship between an unknown function and one or more of its derivatives is referred.
ECIV 301 Programming & Graphics Numerical Methods for Engineers REVIEW III.
Multistep methods previous methods use information at xi to predict yi+1 multistep methods use information from xi-1, xi-2, etc. leads to better results.
Numerical Solutions of Ordinary Differential Equations
NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
CISE301_Topic8L31 SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2,
Differential Equations and Boundary Value Problems
CISE301_Topic8L1KFUPM1 CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1.
MATH 685/ CSI 700/ OR 682 Lecture Notes Lecture 10. Ordinary differential equations. Initial value problems.
CSE 330 : Numerical Methods Lecture 17: Solution of Ordinary Differential Equations (a) Euler’s Method (b) Runge-Kutta Method Dr. S. M. Lutful Kabir Visiting.
PART 7 Ordinary Differential Equations ODEs
Section 6.1: Euler’s Method. Local Linearity and Differential Equations Slope at (2,0): Tangent line at (2,0): Not a good approximation. Consider smaller.
EE3561_Unit 8Al-Dhaifallah14351 EE 3561 : Computational Methods Unit 8 Solution of Ordinary Differential Equations Lesson 3: Midpoint and Heun’s Predictor.
Numerical Solutions of ODE
Scientific Computing Multi-Step and Predictor-Corrector Methods.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 7 - Chapter 25.
Numerical Analysis – Differential Equation
Dr. Mujahed AlDhaifallah ( Term 342)
Today’s class Ordinary Differential Equations Runge-Kutta Methods
Lecture 40 Numerical Analysis. Chapter 7 Ordinary Differential Equations.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 6 - Chapters 22 and 23.
CISE301_Topic8L71 CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2,
CALCULUS REVIEW BME 3510 C PO-WEI CHEN 8/19/2014.
Announcements Please read Chapters 11 and 12
Ordinary Differential Equations
Engineering Problem Solution
Part 7 - Chapter 25.
Numerical Methods by Dr. Laila Fouad.
Scientific Computing Lab
Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equation
ECE 576 – Power System Dynamics and Stability
525602:Advanced Numerical Methods for ME
Class Notes 18: Numerical Methods (1/2)
Numerical Solutions of Ordinary Differential Equations
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L4&5.
Class Notes 19: Numerical Methods (2/2)
Chapter 26.
Part 7 - Chapter 25.
Numerical Analysis Lecture 37.
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L2.
Numerical Analysis Lecture 38.
MATH 175: NUMERICAL ANALYSIS II
Numerical solution of first-order ordinary differential equations
ECE 576 POWER SYSTEM DYNAMICS AND STABILITY
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2, 27-1 CISE301_Topic8L6.
SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L3 KFUPM.
MATH 175: Numerical Analysis II
Ch5 Initial-Value Problems for ODE
6th Lecture : Numerical Methods
Numerical Analysis Lecture 36.
CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L7 KFUPM.
CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L1 KFUPM.
Numerical solution of first-order ordinary differential equations 1. First order Runge-Kutta method (Euler’s method) Let’s start with the Taylor series.
CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM Read , 26-2, 27-1 CISE301_Topic8L6 KFUPM.
Modeling and Simulation: Exploring Dynamic System Behaviour
Presentation transcript:

Differential equations There are ordinary differential equations - functions of one variable And there are partial differential equations - functions of multiple variables

Order of differential equations 1st order 2nd order etc.

Can always turn a higher order ode into a set of 1st order ode’s Example: Let then So solutions to 1st order are important

Linear and nonlinear ODEs Linear: No multiplicative mixing of variables, no nonlinear functions Nonlinear: anything else

Sometimes can linearize Example: for small angles then which is linear

ODEs show up everywhere in engineering dynamics (Newton’s 2nd law) heat conduction (Fourier’s law) diffusion (Fick’s law)

We’re going to cover Euler and Heun's methods Runge-Kutta methods Adaptive Runge-Kutta Multistep methods Adams-Bashforth-Moulton methods Boundary value problems Goal is to get y(x) from dy/dx=f(x)

New value=old value+slope*step size Runge Kutta methods - one step methods Idea is that New value=old value+slope*step size or Slope is generally a function of x, hence y(x) Different methods differ in how to estimate

Euler’s method Use differential equation to estimate slope, by plugging in current values of x and y Example: let Integrate from 1 to 7. Let h=0.5. Initial condition is y(1)=1. Use f for

Begin at x=1

Ok, not so great Truncation errors Round off errors There is local truncation error - error from application at a single step propagated truncation error - previous errors carried forward sum is Global truncation error

Euler’s method uses Taylor series with only first order terms Error is Neglect higher order terms

Example - Local error at any x See Excel sheet

Error can be reduced by smaller h - see Excel sheet

Effect of reducing step size Error vs h

Improvements of Euler’s method - Heun’s method derivative at beginning of interval is applied to entire interval Heun’s method uses average derivative for entire interval

Graph of function with slope arrows explaining Heun’s method Average the slopes

Heun’s method is a predictor-corrector method

Example of Heun’s method - see Excel first few iterations - yHeun(0)=2 (given) y0=yHeun(0)+f(0)*h=2-500*0.5=-248 yHeun(0.5)=yHeun(0)+(f(0)+f(0.5))/2*0.5 =2+(-500-245.5)/2*0.5=-184.375 y0=yHeun(0.5)+f(0.5)*h yHeun(1)=yHeun(0.5)+(f(0.5)+f(1))/2*h