Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions

Slides:



Advertisements
Similar presentations
Bonding in Metals Section 15.3
Advertisements

Bonding in Metals OBJECTIVES:
Chapter 7 Ionic and Metallic Bonding
Chapter 15 Ionic Bonding and Ionic Compounds
Ions and Ionic Compounds l OBJECTIVES: –Determine the number of valence electrons in an atom of a representative element.
Chapter 7 “Ionic and Metallic Bonding”
Chapter 7: Ionic and Metallic Bonding Section 3: Bonding in Metals.
Chapter 7 “Ionic and Metallic Bonding”. Metallic Bonds are… l How metal atoms are held together in the solid. l Metals hold on to their valence electrons.
Metallic Bonds and Metallic Properties
Metallic Bonds What are the forces that give a metal its structure as a solid? The cations in a metal form a lattice that is held in place by strong metallic.
Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions
Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions
Bonding in Metals Section 7.3. Objectives  When you complete this presentation, you will be able to …  Model the valence electrons of metal atoms. 
Metallic Bonding.
Chapter 7 Ionic and Metallic Bonding Section 7.1 Ions.
Section 7.3. Understanding Metal Atoms The behavior of a metal can be better explained if we understand that it is actually a collection of cations, rather.
Metallic Bonds Chemistry Mrs. Coyle.
1. Draw the Lewis dot structure for potassium bonded to chlorine. 2. Ionic bonds most commonly for between _______ and ___________. 3. A cation = ______________.
Chemistry. Bonding in Metals You have probably seen decorative fences, railings, or weathervanes made of a metal called wrought iron. In this section,
Chapter 7 “Metallic Bonding” Chemistry Grade 10. Bonding in Metals OBJECTIVES: –Explain the importance of alloys.
7.3 Bonding in Metals > 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. Chapter 7 Ionic and Metallic Bonding 7.1 Ions 7.2.
Bonding in Metals. Objectives Be able to model the valence electrons of metal atoms Describe the arrangement of atoms in a metal Explain the importance.
IONIC AND METALLIC BONDING Chapter 7. Section Overview 7.1: Ions 7.2: Ionic Bonds and Ionic Compounds 7.3: Bonding in Metals.
Draw an orbital diagram for Al. Electrons and Ions Which electrons are responsible for chemical properties? Valence electrons Core electrons.
7.3 Bonding in Metals > 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. Chapter 7 Ionic and Metallic Bonding 7.1 Ions 7.2.
© Copyright Pearson Prentice Hall Slide 1 of 19 Bonding in Metals You have probably seen decorative fences, railings, or weathervanes made of a metal called.
Metallic Bonding.
Chapter 8 “Metallic Bonding” Pre-AP Chemistry Atascocita High School James R. Simms.
Draw an orbital diagram for Al
This photograph of the tungsten filament from a light bulb was taken with a scanning electron microscope. The filament is magnified more than 100 times.
Chapter 15 Section 3 -metals are made up of closely packed cations surrounded by a sea of valence electrons metallic bonds- consist of the attraction of.
Ionic and Metallic Bonding
Ionic and Metallic Bonding Chapter 7
Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions
Chemistry.
Metallic Bonds Chemistry WHS Wignall.
Metallic Bonds are… How metal atoms are held together in the solid.
Ionic & Metallic Bonding
Chemical Bonds - (Metallic Bonding)
Metallic Bonding.
Metallic Bonds and Metallic Properties
IONIC BONDING AND IONIC COMPOUNDS
Bell Work - 10/19/16 Have out HW #3 of packet to be checked.
Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions
Bell Work - 10/19/16 Have out HW #3 of packet to be checked.
Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions
Metallic Bonds.
Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions
This photograph of the tungsten filament from a light bulb was taken with a scanning electron microscope. The filament is magnified more than 100 times.
Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions
Chemistry.
Bellwork Thursday On your way in, you should have received a card with an ion on it. Using your card, do the following… Find a person or people who balance.
Chapter 7 Ionic and Metallic Bonding
Ch. 6.4 Bonding in Metals Metallic Bonding.
Cations packed in “a sea of electrons”
Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions
Chapter 7 “Ionic and Metallic Bonding”
Metallic Bonds and Metallic Properties
Chapter 7 Ionic and Metallic Bonding 7.1 Ions 7.2 Ionic Bonds and
Metallic Bonds and Metallic Properties
Metallic Bonding.
Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions
Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions
Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions
Metallic Bonding
Bonding in Metals.
Metallic Bonds 7.3.
Chapter 7 Ionic and Metallic Bonding 7.1 Ions 7.2 Ionic Bonds and
Electrons and Ions Valence electrons Core electrons
Presentation transcript:

Chapter 7 Ionic and Metallic Bonding 7.3 Bonding in Metals 7.1 Ions 7.2 Ionic Bonds and Ionic Compounds 7.3 Bonding in Metals Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

What are some properties that are unique to metals? CHEMISTRY & YOU What are some properties that are unique to metals? Wrought iron is a very pure form of iron that contains trace amounts of carbon. It is a tough, malleable, ductile, and corrosion-resistant material that melts at very high temperatures. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Metallic Bonds and Metallic Properties How can you model the valence electrons of metal atoms? Metals consist of closely packed cations and loosely held valence electrons rather than neutral atoms. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Metallic Bonds and Metallic Properties The valence electrons of atoms in a pure metal can be modeled as a sea of electrons. The valence electrons are mobile and can drift freely from one part of the metal to another. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Metallic Bonds and Metallic Properties Metallic bonds are the forces of attraction between the free-floating valence electrons and the positively charged metal ions. These bonds hold metals together. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Metallic Bonds and Metallic Properties Properties of Metals Metals are good conductors of electric current because electrons can flow freely in the metal. As electrons enter one end of a bar of metal, an equal number of electrons leave the other end. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Metallic Bonds and Metallic Properties Properties of Metals Metals are ductile—that is, they can be drawn into wires. Force Metal rod Die Wire Metals are also malleable, which means that they can be hammered or pressed into shapes. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Metallic Bonds and Metallic Properties Properties of Metals When a metal is subjected to pressure, the metal cations easily slide past one another. Sea of electrons Metal cation Force Strong repulsions Nonmetal anion Metal Ionic crystal If an ionic crystal is struck with a hammer, the blow tends to push the positive ions close together. The positive ions repel one another, and the crystal shatters. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

How are metals and ionic compounds different? How are they similar? CHEMISTRY & YOU How are metals and ionic compounds different? How are they similar? Both metals and ionic compounds form crystal structures. However, they have different configurations of electrons. The sea of electrons surrounding cations in a metal allows metals to be ductile and malleable. Ionic crystals will fracture under pressure. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Metallic Bonds and Metallic Properties Crystalline Structure of Metals For spheres of identical size, such as metal atoms, several closely packed arrangements are possible. These Thai oranges illustrate a pattern called a hexagonal close-packed arrangement. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Metallic Bonds and Metallic Properties Crystalline Structure of Metals In a body-centered cubic structure, every atom (except those on the surface) has eight neighbors. Chromium The metallic elements sodium, potassium, iron, chromium, and tungsten crystallize in a body-centered cubic pattern. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Metallic Bonds and Metallic Properties Crystalline Structure of Metals In a face-centered cubic arrangement, every atom has twelve neighbors. Among the metals that form a face-centered cubic structure are copper, silver, gold, aluminum, and lead. Gold Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Metallic Bonds and Metallic Properties Crystalline Structure of Metals In a hexagonal close-packed arrangement, every atom also has twelve neighbors. Zinc The pattern is different from the face-centered cubic arrangement. Metals that have a hexagonal close-packed crystal structure include magnesium, zinc, and cadmium. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

C. A rigid array of electrons D. A sea of electrons Which of the following models can describe the valence electrons of metals? A. A body-centered cube B. Octets of electrons C. A rigid array of electrons D. A sea of electrons Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

C. A rigid array of electrons D. A sea of electrons Which of the following models can describe the valence electrons of metals? A. A body-centered cube B. Octets of electrons C. A rigid array of electrons D. A sea of electrons Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Why are alloys important? Alloys are mixtures of two or more elements, at least one of which is a metal. Brass, for example, is an alloy of copper and zinc. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Alloys Alloys are important because their properties are often superior to those of their component elements. Sterling silver (92.5 percent silver and 7.5 percent copper) is harder and more durable than pure silver, yet it is still soft enough to be made into jewelry and tableware. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

The most important alloys today are steels. The principal elements in most steels, in addition to iron and carbon, are boron, chromium, manganese, molybdenum, nickel, tungsten, and vanadium. Stainless Steel 80.6% Fe 18.0% Cr 0.4% C 1.0% Ni Steels have a wide range of useful properties, such as corrosion resistance, ductility, hardness, and toughness. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Alloys can form from their component atoms in different ways. If the atoms of the components in an alloy are about the same size, they can replace each other in the crystal. This type of alloy is called a substitutional alloy. If the atomic sizes are quite different, the smaller atoms can fit into the interstices (spaces) between the larger atoms. Such an alloy is called an interstitial alloy. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Explain why alloys are important, and list one important alloy. Alloys are important because they often have properties that are superior to those of the elements from which they are made. Stainless steel is an important alloy because of its corrosion resistance. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Key Concepts The valence electrons of atoms in a pure metal can be modeled as a sea of electrons. Alloys are important because their properties are often superior to those of their component elements. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Glossary Terms metallic bond: the force of attraction that holds metals together; it consists of the attraction of free-floating valence electrons for positively charged metal ions alloy: a mixture composed of two or more elements, at least one of which is a metal Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Bonding and Interactions BIG IDEA Bonding and Interactions Metals are made up of closely packed cations surrounded by a sea of electrons. The sea-of-electrons model explains why metals are good conductors of electric current and why they are ductile and malleable. Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.