2. The type IIB matrix model 5. Result of D=6

Slides:



Advertisements
Similar presentations
A method of finding the critical point in finite density QCD
Advertisements

Brane-World Inflation
Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
Euclidean Wilson loops and Riemann theta functions M. Kruczenski Purdue University Based on: arXiv: (w/ R. Ishizeki, S. Ziama) Great Lakes 2011.
Giant Magnon and Spike Solutions in String Theories Bum-Hoon Lee Center for Quantum SpaceTime(CQUeST)/Physics Dept. Sogang University, Seoul, Korea PAQFT08,
Test of the Stefan-Boltzmann behavior for T>0 at tree-level of perturbation theory on the lattice DESY Summer Student 2010 Carmen Ka Ki Li Imperial College.
example: four masses on springs
AppxA_01fig_PChem.jpg Complex Numbers i. AppxA_02fig_PChem.jpg Complex Conjugate.
A new continuum limit for the one matrix model
Putting M theory on computer Jun Nishimura KEK & Graduate University for Advanced Studies (SOKENDAI) based on collaboration with Konstantinos Anagnostopoulos.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
Lecture 11: Ising model Outline: equilibrium theory d = 1
Recent developments in the type IIB matrix model Jun Nishimura (KEK & SOKENDAI) 8-15 September, 2013 “Workshop on Noncommutative Field Theory and Gravity”
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
Lecture 13: Field-theoretic formulation of Langevin models
Gauge Theory, Superstrings and Supermagnets Volker Schomerus SYSY Goettingen 2012.
Finite Temperature Field Theory Joe Schindler 2015.
Petra Zdanska, IOCB June 2004 – Feb 2006 Resonances and background scattering in gedanken experiment with varying projectile flux.
§ Linear Operators Christopher Crawford PHY
Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions Talk at KEK for String Advanced Lectures,
Monte Carlo simulations of a supersymmetric matrix model of dynamical compactification in nonperturbative string theory Konstantinos N. Anagnostopoulos,
Schwarzschild Radius and Black Hole Thermodynamics with Corrections from Simulations of SUSY Matrix Quantum Mechanics Talk at “Black Holes and Quantum.
Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions Seminar at University of Tokyo,
Large N reduction and supersymmetry MCFP Workshop on Large N Gauge Theories, May 13-15, 2010, University of Maryland, College Park Jun Nishimura (KEK Theory.
Does 4d space-time emerge dynamically from the IKKT matrix model ? Numerical Approaches to AdS/CFT, Large N and Gravity, Sep 28-Oct 2, 2009, Imperial College,
Jun Nishimura (KEK Theory Center, SOKENDAI)
Monte Carlo Studies of Dynamical Compactification of Extra Dimensions in a Model of Non-perturbative String Theory Takehiro Azuma (Setsunan Univ.) JPS.
Algebra II Honors Problem of the Day Homework: p odds Solve the following: No real solution.
Recent developments in Monte Carlo studies of superstring theory Jun Nishimura (KEK & SOKENDAI) August, 2013 “Current Themes in High Energy Physics.
Wilsonian approach to Non-linear sigma models Etsuko Itou (YITP, Japan) Progress of Theoretical Physics 109 (2003) 751 Progress of Theoretical Physics.
4.8 “The Quadratic Formula” Steps: 1.Get the equation in the correct form. 2.Identify a, b, & c. 3.Plug numbers into the formula. 4.Solve, then simplify.
Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
1 Superstring vertex operators in type IIB matrix model arXiv: [hep-th], [hep-th] Satoshi Nagaoka (KEK) with Yoshihisa Kitazawa (KEK &
Simulating Superstrings inside a Black Hole Nov.1, ’08, RIKEN workshop “New Developments in Gauge Theory Driven by Numerical Simulation” Jun Nishimura.
Precision test of the gauge/gravity duality from first principles IPMU Focus Week “Condensed Matter Physics Meets High Energy Physics”, IPMU, Univ. of.
Takehiro Azuma (Setsunan Univ.) with Konstantinos N. Anagnostopoulos and Jun Nishimura Tea Duality seminar at TIFR, 10:00-11:00 Dec. 31, 2015 Monte Carlo.
A nonperturbative definition of N=4 Super Yang-Mills by the plane wave matrix model Shinji Shimasaki (Osaka U.) In collaboration with T. Ishii (Osaka U.),
Supersymmetric three dimensional conformal sigma models Collaborated with Takeshi Higashi and Kiyoshi Higashijima (Osaka U.) Etsuko Itou (Kyoto U. YITP)
The nonperturbative analyses for lower dimensional non-linear sigma models Etsuko Itou (Osaka University) 1.Introduction 2.The WRG equation for NLσM 3.Fixed.
3D out of 9D ---the birth of our Universe from the superstring theory on computer string seminar at UBC Vancouver, Canada Nov. 5, 2012 Jun Nishimura (KEK.
Space-time picture suggested by the IIB matrix model YITP workshop “Discretization Approaches to the Dynanics of Space-time and Fields”, Sept.28, 2010.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
B.-H.L, R. Nayak, K. Panigrahi, C. Park On the giant magnon and spike solutions for strings on AdS(3) x S**3. JHEP 0806:065,2008. arXiv: J. Kluson,
The origin of space-time as seen from matrix model simulations Seminar at KMI, Nagoya U., Nov. 8 (Tue.), 2011 Jun Nishimura (KEK,SOKENDAI) Ref.) M.Hanada,
Goro Ishiki (University of Tsukuba) arXiv: [hep-th]
DIRECT TEST OF THE ADS/CFT CORRESPONDENCE BY MONTE CARLO STUDIES OF N=4 SYM Asato Tsuchiya Shizuoka July 17, 2014.
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
複素ランジュバン法におけるゲージ・クーリングの 一般化とその応用 西村 淳 ( KEK 理論センター、総研大) 「離散的手法による場と時空のダイナミクス」研究会 2015 9月15日(火)@岡山 Ref.) J.N.-Shimasaki: arXiv: [hep-lat], Phys.Rev.
Simplify. Complex Numbers Complex Numbers Intro Definition of Pure Imaginary Numbers: For any positive real number, “b” Where i is the imaginary unit.
Path modification method for the sign problem
Monte Carlo Studies of Matrix Theory at Finite Temperature
Matter-antimatter coexistence method for finite density QCD
Large N Phase Transitions in massive N = 2 Gauge Theories
Weyl Symmetry, Planck Scale, & Inflation.
Institut für Theoretische Physik Eberhard-Karls-Universität Tübingen
"Phase diagram of the GWW phase transition of the matrix quantum mechanics with a chemical potential" Takehiro Azuma (Setsunan Univ.) From Strings to LHC.
Path modification method for the sign problem
Jun Nishimura (KEK & SOKENDAI)
8.6 Solving Exponential & Logarithmic Equations
Complex Langevin analysis of the spontaneous rotational symmetry breaking in the dimensionally-reduced super-Yang-Mills models Strings 2018, Jun 27th 2018.
"Phase Transitions of a (Super) Quantum Mechanical Matrix Model with a Chemical Potential" (arXiv: ) Takehiro Azuma (Setsunan Univ.) JPS 73rd.
Complex Langevin analysis of the spontaneous rotational symmetry breaking in the dimensionally-reduced super-Yang-Mills models (arXiv: ) Takehiro.
Jun Nishimura (KEK & SOKENDAI)
Monte Carlo studies of dynamical compactification of extra dimensions in a model of nonperturbative string theory Lattice 2015, Jul 15th 2015 (Wed) 18:30-21:00.
Jun Nishimura (KEK, SOKENDAI) JLQCD Collaboration:
Complex Langevin analysis of the spontaneous rotational symmetry breaking in the Euclidean type IIB matrix model Takehiro Azuma (Setsunan Univ.) JPS 74th.
Based on collaboration with Y. Kitazawa (KEK, SOKENDAI)
Complex Langevin analysis of the spontaneous rotational symmetry breaking in the dimensionally-reduced super-Yang-Mills models Takehiro Azuma (Setsunan.
Bunkyo school building, University of Tsukuba,
Jun Nishimura (KEK, Sokendai) and Shinji Shimasaki (Keio Univ.)
Presentation transcript:

2. The type IIB matrix model 5. Result of D=6 Complex Langevin analysis of the spontaneous rotational symmetry breaking in the Euclidean type IIB matrix model 1st R-CCS Symposium, Feb 18th 2019 (Mon) Konstantinos N. Anagnostopoulos, Takehiro Azuma, Yuta Ito, Jun Nishimura, Toshiyuki Okubo and Stratos Kovalkov Papadoudis 1. Introduction 4. Mass deformation Difficulties in putting complex partition functions on computers. [Y. Ito and J. Nishimura, arXiv:1609.04501] SO(D) breaking term Order parameters for SO(D)'s SSB Sign problem: The reweighting requires configs. exp[O(N2)] Fermionic mass term: Avoids 's singular eigenvalue distribution <*>0 = (V.E.V. for phase-quenched Z0) Extrapolation (i) N→∞ ⇒(ii)ε→0 ⇒ (iii) mf→0 2. The type IIB matrix model 5. Result of D=6 [K.N. Anagnostopoulos, T. Azuma, Y. Ito, J. Nishimura and S.K. Papadoudis, arXiv:1712.07562] Candidate for nonperturbative string theory (a.k.a. "IKKT model") [N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115] mμ=(0.5,0.5,1,2,4,8) histogram of drift N=24, mf=0.65 (i) N→∞ (ε,mf)=(0.25,0.65) reject Scattering plot of 's eigenvalues trust Im <λμ> u's distribution p(u) (log-log) (ε,mf)=(0.25,0.65) ・Euclidean case after Wick rotation A0→iA D,Γ0→-iΓ D. ⇒Path integral is finite without cutoff. faster than exponential Evades the origin. u 1/N Re ・Aμ, Ψα ⇒N×N Hermitian traceless matrices.  (ii) ε→0 after N→∞ (iii) mf→0 after ε→0 ・Originally defined in D=10. We consider the simplified D=6 case as well. mf=0.65 SO(6)→SO(3) 0.338(6) ρμ ρμ 0.299(48) 0.230(3) ・Eigenvalues of Aμ : spacetime coordinate⇒  =2 SUSY 0.061(32) mf=1000 no SSB of SO(6) 0.227(13) ρμ ・Integrating out ψ yields det  in D=6 (Pf in D=10) 0.013(47) ε ε 0.055(5) mf2 (dotted line: mf→0 limit fixed to GEM results) SSB SO(6)→SO(3) Consistent with GEM. SO(3) SO(4) SO(5) ・det/Pf   's complex phase ⇒Spontaneous Symmetry Breaking (SSB) of SO(D). 6. Result of D=10 (preliminary) [K.N. Anagnostopoulos, T. Azuma, Y. Ito, J. Nishimura, T. Okubo and S.K. Papadoudis, work in progress] Result of Gaussian Expansion Method (GEM) mμ=(0.5,0.5,1,2,4,8,8,8,8,8) [T.Aoyama, J.Nishimura, and T.Okubo, arXiv:1007.0883, J.Nishimura, T.Okubo and F.Sugino, arXiv:1108.1293] SSB SO(6)→SO(3) (In D=10, SO(10)→SO(3)) Dynamical compactification to 3-dim spacetime. (ii) ε→0 after N→∞ mf=1.0 SO(10)→SO(3) mf=1.4 SO(10)→SO(4) <λμ> (i) N→∞ (ε,mf)=(0.325,1.0) ρμ ρμ (D=6) 0.17 0.15 3. Complex Langevin Method (CLM) ε 0.05 Solve the complex version of the Langevin equation. 0.05 ε [Parisi, Phys.Lett. 131B (1983) 393, Klauder, Phys.Rev. A29 (1984) 2036] Free energy by GEM for mf>0 at 3 loop drift term histogram of fermionic drift (no term) mf=1.0 N=32 solutions of SO(4) and SO(6) ansatz all faster than exponential SO(6) ansatz SO(4) ansatz λμ ・Aμ : Hermitian→general complex traceless matrices. ・ημ: Hermitian white noise obeying free energy CLM does not work when it encounters these problems: mf mf =1.4 (1) Excursion problem: Aμ is too far from Hermitian ⇒Gauge Cooling minimizes the Hermitian norm Trend of SSB SO(10)→SO(3). (iii) mf→0 after ε→0: hand in hand with GEM ??? (2) Singular drift problem: The drift term ∂S/∂(Aμ)ji diverges due to 's near-zero eigenvalues. 7. Future works ・Reweighting method [J. Bloch, arXiv:1701.00986] ・Other deformations than the mass deformation (z=1:original Euclidean, pure imaginary z: fermion det/Pf is real) [Y. Ito and J. Nishimura, arXiv:1710.07929] We trust CLM when the distribution p(u) of the drift norm falls exponentially as p(u)∝e-au. [K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1606.07627] Look at the drift term ⇒ Get the drift of CLM!!