Volume 1, Issue 1, Pages (July 2016)

Slides:



Advertisements
Similar presentations
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
Advertisements

Volume 1, Issue 2, Pages (August 2016)
Volume 3, Issue 2, Pages (August 2017)
On the Electrolytic Stability of Iron-Nickel Oxides
Metal-Organic Frameworks for Energy Applications
Volume 3, Issue 3, Pages (September 2017)
Phage Mu Transposition Immunity: Protein Pattern Formation along DNA by a Diffusion- Ratchet Mechanism  Yong-Woon Han, Kiyoshi Mizuuchi  Molecular Cell 
Volume 1, Issue 5, Pages (November 2016)
Volume 3, Issue 5, Pages (November 2017)
Direct Growth of Well-Aligned MOF Arrays onto Various Substrates
Template-Directed Growth of Well-Aligned MOF Arrays and Derived Self-Supporting Electrodes for Water Splitting  Guorui Cai, Wang Zhang, Long Jiao, Shu-Hong.
Volume 103, Issue 9, Pages (November 2012)
Volume 42, Issue 6, Pages (June 2011)
GroEL Mediates Protein Folding with a Two Successive Timer Mechanism
Wei Wen, Jin-Ming Wu, Yin-Zhu Jiang, Lu-Lu Lai, Jian Song  Chem 
Volume 115, Issue 2, Pages (October 2003)
Key Interactions for Clathrin Coat Stability
Volume 17, Issue 3, Pages (March 2009)
First Node of Ranvier Facilitates High-Frequency Burst Encoding
Volume 39, Issue 5, Pages (November 2013)
Volume 4, Issue 1, Pages (January 2018)
Volume 18, Issue 10, Pages (October 2011)
Jennifer L. Ross, Henry Shuman, Erika L.F. Holzbaur, Yale E. Goldman 
GroEL Mediates Protein Folding with a Two Successive Timer Mechanism
Volume 18, Issue 20, Pages (October 2008)
Volume 2, Issue 2, Pages (February 2017)
Volume 100, Issue 3, Pages (February 2011)
Volume 133, Issue 1, Pages (April 2008)
Regulation of the Protein-Conducting Channel by a Bound Ribosome
Volume 38, Issue 5, Pages (June 2010)
Janin Glaenzer, Martin F. Peter, Gavin H. Thomas, Gregor Hagelueken 
Volume 14, Issue 5, Pages (May 2006)
Hierarchical Pore Structures as Highways for Enzymes and Substrates
Volume 143, Issue 2, Pages (October 2010)
Single-Molecule Tracking of Collagenase on Native Type I Collagen Fibrils Reveals Degradation Mechanism  Susanta K. Sarkar, Barry Marmer, Gregory Goldberg,
Unfolding Barriers in Bacteriorhodopsin Probed from the Cytoplasmic and the Extracellular Side by AFM  Max Kessler, Hermann E. Gaub  Structure  Volume.
Volume 21, Issue 11, Pages (November 2013)
Giulia Varsano, Yuedi Wang, Min Wu  Cell Reports 
Visualization of Oleic Acid-induced Transdermal Diffusion Pathways Using Two-photon Fluorescence Microscopy  Betty Yu, Robert Langer, Daniel Blankschtein 
Haixin Sui, Kenneth H. Downing  Structure 
Metal-Organic Frameworks for Energy Applications
A Radical Mechanism for Frustrated Lewis Pair Reactivity
Volume 29, Issue 6, Pages (March 2008)
Khalid AlKaabi, Casey R. Wade, Mircea Dincă  Chem 
Structural Basis of cis- and trans-Combretastatin Binding to Tubulin
Volume 34, Issue 3, Pages (May 2009)
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
Volume 4, Issue 1, Pages (January 2018)
Mechanism of Anionic Conduction across ClC
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Volume 114, Issue 6, Pages (March 2018)
Aamod V. Desai, Arkendu Roy, Partha Samanta, Biplab Manna, Sujit K
Bin Li, Hui-Min Wen, Wei Zhou, Jeff Q. Xu, Banglin Chen  Chem 
Conformational Activation of Argonaute by Distinct yet Coordinated Actions of the Hsp70 and Hsp90 Chaperone Systems  Kotaro Tsuboyama, Hisashi Tadakuma,
Volume 17, Issue 2, Pages (February 2009)
Katie L. Zobeck, Martin S. Buckley, Warren R. Zipfel, John T. Lis 
Volume 3, Issue 1, Pages (July 2017)
Maria Spies, Stephen C. Kowalczykowski  Molecular Cell 
Volume 3, Issue 1, Pages 8-10 (July 2017)
Volume 4, Issue 3, Pages (March 2018)
Volume 2, Issue 6, Pages (June 2017)
Volume 27, Issue 9, Pages (May 2017)
Khalid AlKaabi, Casey R. Wade, Mircea Dincă  Chem 
Greater Porosity with Redox Reaction Speeds Up MOF Color Change
Joshua S. Weinger, Minhua Qiu, Ge Yang, Tarun M. Kapoor 
Volume 3, Issue 5, Pages (November 2017)
Unfolding Barriers in Bacteriorhodopsin Probed from the Cytoplasmic and the Extracellular Side by AFM  Max Kessler, Hermann E. Gaub  Structure  Volume.
XMAP215 Is a Processive Microtubule Polymerase
Jennifer L. Ross, Henry Shuman, Erika L.F. Holzbaur, Yale E. Goldman 
Volume 3, Issue 5, Pages (November 2017)
Presentation transcript:

Volume 1, Issue 1, Pages 154-169 (July 2016) Toward Design Rules for Enzyme Immobilization in Hierarchical Mesoporous Metal- Organic Frameworks  Peng Li, Justin A. Modica, Ashlee J. Howarth, Ernesto Vargas L., Peyman Z. Moghadam, Randall Q. Snurr, Milan Mrksich, Joseph T. Hupp, Omar K. Farha  Chem  Volume 1, Issue 1, Pages 154-169 (July 2016) DOI: 10.1016/j.chempr.2016.05.001 Copyright © 2016 Elsevier Inc. Terms and Conditions

Chem 2016 1, 154-169DOI: (10.1016/j.chempr.2016.05.001) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 1 Immobilization of Cutinase in the Mesoporous Channels of NU-1000 Zr atoms are shown in green, C atoms are gray, O atoms are red, and H atoms are white. See also Figure S1. Chem 2016 1, 154-169DOI: (10.1016/j.chempr.2016.05.001) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 2 PXRD and N2 Isotherms of Cutinase@NU-1000 (A) Simulated PXRD of NU-1000 (blue) and experimental PXRD of NU-1000 before (black) and after (red) cutinase loading. (B) N2 sorption isotherm of NU-1000 and cutinase@NU-1000 at 77 K. (C) Pore-size distribution of as-synthesized NU-1000 and cutinase@NU-1000. Chem 2016 1, 154-169DOI: (10.1016/j.chempr.2016.05.001) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 3 Diffusion Cut647 into NU-1000 Crystals with Different Lengths (A and D) Scanning electron microscopy images of (A) 10 μm (inset image shows the typical hexagonal cylinder morphology of NU-1000 crystals) and (D) 1.5 μm. (B and E) CLSM images of (B) a 10-μm NU-1000 crystal (scale bar represents 10 μm) and (E) a 1.5-μm NU-1000 crystal (scale bar represents 1.5 μm) after immersion in 100-μM Cut647 solution over time. (C and F) An overlay of experimental Cut647 concentration (dots) and corresponding simulated fits (lines) along the middle of (C) a 10-μm NU-1000 crystal and (F) a 1.5-μm NU-1000 crystal at different time points. See also Figure S1. Chem 2016 1, 154-169DOI: (10.1016/j.chempr.2016.05.001) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 4 Simulation Model and Substrate Permeability of cutinase@NU-1000 (A) Model of cutinase@NU-1000 after geometry optimization (NU-1000 and the active triad of cutinase-Ser126, Asp180, and His194 are displayed in a CPK model; Zr atoms are shown in green, C atoms are gray, O atoms are red, N atoms are blue, and H atoms are white). (B) Dye molecules fluorescein and 4,4′,4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (TCPP) used to test reactant diffusion in cutinase@NU-1000-10 μm. (C) 3D reconstructed image of Cut647@NU-1000-10 μm crystals containing fluorescein (scale bar represents 10 μm). (D) 2D CLSM images taken using different laser channels to view Cut647, TCPP, and both Cut647 and TCPP in a single NU-1000-10 μm crystal (red for Cut647, green for fluorescein, and blue for TCPP; scale bar represents 10 μm). See also Figures S3 and S4. Chem 2016 1, 154-169DOI: (10.1016/j.chempr.2016.05.001) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 5 In Situ Hydrolysis of Resorufin by Blocked cutinase@NU-10000 CLSM images of (A) a magnified image of a single NU-1000-10 μm crystal containing active cutinase (highlighted in a blue circle, not labeled with AlexaFluor 647) blocked by deactivated cutinase (highlighted in a red circle, labeled with AlexaFluor 647) and (B) multiple crystals of NU-1000 showing active and deactivated cutinase similar to the image in Figure 7A. In situ hydrolysis of resorufin butyrate using cutinase@NU-1000 containing active and deactivated cutinase for (C) 5 s and (D) 60 s in buffer solution at room temperature. Scale bars represent 10 μm. See also Movie S3. Chem 2016 1, 154-169DOI: (10.1016/j.chempr.2016.05.001) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 6 Activity and Stability Assays (A–E) Reaction kinetics of PNPB hydrolysis by cutinase@NU-1000 (black), NU-1000 (red), and the supernatant solution used to soak cutinase@NU-1000 (blue). Kinetic study of hydrolysis of PNPB by (A) cutinase@NU-1000 (black) and free cutinase (red) in (B) buffer with detergent, (C) buffer without detergent, (D) buffer with urea, and (E) buffer with THF. (F) Recyclability test of cutinase@NU-1000 in buffer without detergent. Chem 2016 1, 154-169DOI: (10.1016/j.chempr.2016.05.001) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 7 Active-Site Accessibility of Immobilized Cutinases in MOFs (A) Perspective view of 1D channels of PCN-600, CYCU-3, and NU-1000. Purple cylinders represent the channels, and yellow tunnels indicate the connectivity between neighboring channels. (B) Schematic of the enzyme-loading and surface-treatment process. (C) Maximum loading capacity (black), enzymes encapsulated in channels (red), and accessible enzymes (blue) in nano-sized MOFs. See also Figures S6–S8. Chem 2016 1, 154-169DOI: (10.1016/j.chempr.2016.05.001) Copyright © 2016 Elsevier Inc. Terms and Conditions