Cell Growth and Size Homeostasis in Silico

Slides:



Advertisements
Similar presentations
Nonlinear Poisson Equation for Heterogeneous Media Langhua Hu, Guo-Wei Wei Biophysical Journal Volume 103, Issue 4, Pages (August 2012) DOI: /j.bpj
Advertisements

Pressure and Temperature Dependence of Growth and Morphology of Escherichia coli: Experiments and Stochastic Model  Pradeep Kumar, Albert Libchaber  Biophysical.
Jingkui Wang, Marc Lefranc, Quentin Thommen  Biophysical Journal 
Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Volume 112, Issue 10, Pages (May 2017)
Masahiro Ueda, Tatsuo Shibata  Biophysical Journal 
Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament
Volume 98, Issue 2, Pages (January 2010)
Steady-State Differential Dose Response in Biological Systems
A Biophysical Model of Electrical Activity in Human β-Cells
Koichiro Uriu, Luis G. Morelli  Biophysical Journal 
Volume 84, Issue 6, Pages (June 2003)
Volume 105, Issue 9, Pages (November 2013)
SAXS versus FRET: A Matter of Heterogeneity?
Dynamics of Active Semiflexible Polymers
Transcription Stochasticity of Complex Gene Regulation Models
The Origin of Short Transcriptional Pauses
Volume 112, Issue 6, Pages (March 2017)
Nathan L. Hendel, Matthew Thomson, Wallace F. Marshall 
MunJu Kim, Katarzyna A. Rejniak  Biophysical Journal 
Volume 111, Issue 2, Pages (July 2016)
Is Aggregate-Dependent Yeast Aging Fortuitous
Volume 106, Issue 6, Pages (March 2014)
Fundamental Constraints on the Abundances of Chemotaxis Proteins
Volume 98, Issue 11, Pages (June 2010)
Volume 112, Issue 2, Pages (January 2017)
Michał Komorowski, Jacek Miękisz, Michael P.H. Stumpf 
Molecular and Mechanical Causes of Microtubule Catastrophe and Aging
Volume 96, Issue 2, Pages (January 2009)
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
Volume 5, Issue 4, Pages e4 (October 2017)
Geometric Asymmetry Induces Upper Limit of Mitotic Spindle Size
Quantifying Biomolecule Diffusivity Using an Optimal Bayesian Method
Random Hydrolysis Controls the Dynamic Instability of Microtubules
V.M. Burlakov, R. Taylor, J. Koerner, N. Emptage  Biophysical Journal 
Nathan L. Hendel, Matthew Thomson, Wallace F. Marshall 
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Volume 100, Issue 7, Pages (April 2011)
Drift and Behavior of E. coli Cells
Volume 105, Issue 1, Pages (July 2013)
Hisashi Ishida, Hidetoshi Kono  Biophysical Journal 
Volume 114, Issue 4, Pages (February 2018)
Stochastic Pacing Inhibits Spatially Discordant Cardiac Alternans
Volume 96, Issue 5, Pages (March 2009)
Irina V. Dobrovolskaia, Gaurav Arya  Biophysical Journal 
Volume 100, Issue 11, Pages (June 2011)
Dynamics of Active Semiflexible Polymers
Volume 111, Issue 12, Pages (December 2016)
Kinetics of Surface-Driven Self-Assembly and Fatigue-Induced Disassembly of a Virus- Based Nanocoating  Alejandro Valbuena, Mauricio G. Mateu  Biophysical.
Interbeat Interval Modulation in the Sinoatrial Node as a Result of Membrane Current Stochasticity—A Theoretical and Numerical Study  Hila Dvir, Sharon.
Lipeng Lai, Xiaofeng Xu, Chwee Teck Lim, Jianshu Cao 
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Mathematical Modeling of the Heat-Shock Response in HeLa Cells
Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives
Ion-Induced Defect Permeation of Lipid Membranes
Volume 105, Issue 9, Pages (November 2013)
Quantification of Fluorophore Copy Number from Intrinsic Fluctuations during Fluorescence Photobleaching  Chitra R. Nayak, Andrew D. Rutenberg  Biophysical.
Stochastic Pacing Inhibits Spatially Discordant Cardiac Alternans
Localization Precision in Stepwise Photobleaching Experiments
Steady-State Differential Dose Response in Biological Systems
Modelling Toehold-Mediated RNA Strand Displacement
Volume 113, Issue 3, Pages (August 2017)
Volume 100, Issue 6, Pages (March 2011)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Volume 105, Issue 9, Pages (November 2013)
Systems Biophysics: Multiscale Biophysical Modeling of Organ Systems
Prediction of Cell Alignment on Cyclically Strained Grooved Substrates
Joana Pinto Vieira, Julien Racle, Vassily Hatzimanikatis 
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Malin Persson, Elina Bengtsson, Lasse ten Siethoff, Alf Månsson 
Presentation transcript:

Cell Growth and Size Homeostasis in Silico Yucheng Hu, Tianqi Zhu  Biophysical Journal  Volume 106, Issue 5, Pages 991-997 (March 2014) DOI: 10.1016/j.bpj.2014.01.038 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 Cell-growth rate as a function of cell size. (A) Experimental result obtained using the Collins-Richmond method in Tzur et al. (13). Permission was obtained from the American Association for the Advancement of Science (AAAA, Washington, DC, www.aaas.org) to reuse this figure. Note that different curves correspond to different detailed implementations. (B) Averaged growth rate obtained from the in silico population simulated using our cell-growth model (black curve). Pure exponential growth (v(s) = (λ2 − γ2)s) for 0 ≤ s ≤ 2000 and linear decay in growth rate (v(s) = 500 − γ2s) for s ≥ 2000 (Dashed-red curve). To see this figure in color, go online. Biophysical Journal 2014 106, 991-997DOI: (10.1016/j.bpj.2014.01.038) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 (A) A two-variable cell-growth model. Cell size is proportional to the number of ribosomes it contains. The decay rate per cell volume is γ2 and the production rate is proportional to the amount of working ribosomes, λ2min{m,s}. (B) Trajectory of mRNA and cell size simulated using Eqs. 1a and 1b. Initially, the mRNA level is set to zero. According to the relative abundance of mRNA and ribosomes, three growth stages can be identified in which mRNA and ribosomes play different roles in regulating cell growth (see main article). To see this figure in color, go online. Biophysical Journal 2014 106, 991-997DOI: (10.1016/j.bpj.2014.01.038) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 Asynchronous (left) and newborn (right) cell size distributions from experimental (black thick line) and in silico populations simulated using Division Rule 1 (green dashed line), Division Rule 2 (red dot-dashed line), and Division Rule 3 (blue solid line). Sample size is N = 105. See Methods for the parameter values. To see this figure in color, go online. Biophysical Journal 2014 106, 991-997DOI: (10.1016/j.bpj.2014.01.038) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 L1-distance between the in silico and experimental size distributions (see Methods). Initially, the population is synchronized at age zero and all cells have an identical cell size. Different curves correspond to different division rules. To see this figure in color, go online. Biophysical Journal 2014 106, 991-997DOI: (10.1016/j.bpj.2014.01.038) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 5 (A) Growth rate of Model A1, as given by Eq. A7. (Inset) Corresponding growth rate per volume (m in Eq. A6a). (B) Mean growth rate in Model A2 (black curve). (Dashed-red curve) Pure exponential growth (v(s) = (λ2 − γ2)s) for 0 ≤ s ≤ 2000 and linear decay in growth rate (v(s) = 500 − γ2s) for s ≥ 2000. To see this figure in color, go online. Biophysical Journal 2014 106, 991-997DOI: (10.1016/j.bpj.2014.01.038) Copyright © 2014 Biophysical Society Terms and Conditions