Linear Programming.

Slides:



Advertisements
Similar presentations
Linear Programming. Businesses use linear programming to find out how to maximize profit or minimize costs. Most have constraints on what they can use.
Advertisements

Do Now The cost of renting a pool at an aquatic center id either $30 an hr. or $20 an hr. with a $40 non refundable deposit. Use algebra to find for how.
3.4 Linear Programming.
S EPTEMBER 14, L INEAR P ROGRAMMING Linear programming = a process of maximizing a linear objective function Objective function = gives a quantity.
Ch 2. 6 – Solving Systems of Linear Inequalities & Ch 2
Linear Programming?!?! Sec Linear Programming In management science, it is often required to maximize or minimize a linear function called an objective.
Linear Programming Unit 2, Lesson 4 10/13.
3-5: Linear Programming.
Objectives: Set up a Linear Programming Problem Solve a Linear Programming Problem.
Graph and solve systems of linear inequalitites A-CED 3.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 7.6 Linear Programming.
3.4 Linear Programming p Optimization - Finding the minimum or maximum value of some quantity. Linear programming is a form of optimization where.
2-3: Linear Programming Unit 2: Linear Functions English Casbarro.
Linear Programming. What is Linear Programming? Say you own a 500 square acre farm. On this farm you can grow wheat, barley, corn or some combination.
Linear Programming 1.3 M Warm-Up Graph the system.
Solve problems by using linear programming.
Systems of Inequalities in Two Variables Sec. 7.5a.
11C. Linear Programming. What is a linear programming problem? 1.A set of variables (in Further Maths there will only ever be two variables) called decision.
5 minutes Warm-Up 1) Solve the system. 2) Graph the solution.
Linear Programming Advanced Math Topics Mrs. Mongold.
Class Schedule: Class Announcements Homework Questions 3.4 Notes Begin Homework.
Monday WARM-UP: TrueFalseStatementCorrected Statement F 1. Constraints are conditions written as a system of equations Constraints are conditions written.
Intro to Linear Programming
CCMIII U2D3 Warmup Multiple Choice: Choose the best answer for each. 1. Solve x – (-38) ≥ -51 (a) x ≥ -89(b) x ≤ -13(c) x ≤ 89(d) x ≥ Solve 6x ˃
Warm-up Solve each system of equations:
Chapter 3 Test Review Algebra II CP Mrs. Mongold.
Get out your Vertices Worksheet!
Constraints Feasible region Bounded/ unbound Vertices
Unit 1 Linear programming. Define: LINEAR PROGRAMMING – is a method for finding a minimum or maximum value of some quantity, given a set of constraints.
Warm-upWarm-up Sketch the region bounded by the system of inequalities: 1) 2) Sketch the region bounded by the system of inequalities: 1) 2)
3.4 Linear Programming Solve linear programming problems in two variables using graphical methods.
LINEAR PROGRAMMING 3.4 Learning goals represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret.
1 What you will learn  Lots of vocabulary!  How to find the maximum and minimum value of a function given a set of “rules”
3-4: Linear Programming Objectives: Standards addressed:
3.4: Linear Programming  Intro: Oftentimes we want to optimize a situation - this means to:  find a maximum value (such as maximizing profits)  find.
3-5: Linear Programming. Learning Target I can solve linear programing problem.
Linear Programming. What is linear programming? Use a system of constraints (inequalities) to find the vertices of the feasible region (overlapping shaded.
3.4 Linear Programming Objective:
3.3 Linear Programming. Vocabulary Constraints: linear inequalities; boundary lines Objective Function: Equation in standard form used to determine the.
Chapter 3 Section 4 Linear Programming Algebra 2 January 29, 2009.
Copyright © 2015 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Section 7.4 Linear Programming Math in Our World.
1. What does a need to be if there were infinitely many solutions to the system of equations. y + 2x = 12 2y + 4x = 2a.
Warm Up Solve the system: 2x + y – 3z = -6 x – y + 2z = 5 3x + 2y – z = 4.
LINEAR PROGRAMMING A-CED.3 REPRESENT CONSTRAINTS BY EQUATIONS OR INEQUALITIES, AND BY SYSTEMS OF EQUATIONS AND/OR INEQUALITIES, AND INTERPRET SOLUTIONS.
Section 7.5 Linear Programming Math in Our World.
Linear Programming Chapter 3 Lesson 4 Vocabulary Constraints- Conditions given to variables, often expressed as linear inequalities. Feasible Region-
2.6 Solving Systems of Linear Inequalities
2.7 Linear Programming Objectives: Use linear programming procedures to solve applications. Recognize situations where exactly one solution to a linear.
3.3 and 3.4 Applications of Linear Models
3.3 Linear Programming.
LINEARPROGRAMMING 5/23/ :13 AM 5/23/ :13 AM 1.
Do Now The cost of renting a pool at an aquatic center is either $30 an hr. or $20 an hr. with a $40 non refundable deposit. Use algebra to find for how.
Systems of Equations and Inequalities
Ch. 3.4 I can solve problems using linear programming
ALGEBRA II HONORS/GIFTED SECTION 3-4 : LINEAR PROGRAMMING
Warm Up Solve the system: 2x + y – 3z = -6 x – y + 2z = 5
3-3 Optimization with Linear Programming
Linear Programming.
Math3H – Unit 2 Day 3 Linear Programming
Linear Programming Objectives: Set up a Linear Programming Problem
Objectives Essential Understanding: Some real-world problems involve multiple linear relationships. Linear programming accounts for all of these linear.
Objective Vocabulary Solve linear programming problems.
3-4 Linear Programming.
3-4 Linear Programming Warm Up Lesson Presentation Lesson Quiz
Warm Up Solve for x:
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
LINEARPROGRAMMING 4/26/2019 9:23 AM 4/26/2019 9:23 AM 1.
Nature does nothing uselessly.
1.6 Linear Programming Pg. 30.
Linear Programming 1.3 M3.
Presentation transcript:

Linear Programming

Linear Programming Businesses use linear programming to find out how to maximize profit or minimize costs. Most have constraints on what they can use or buy.

Find the minimum and maximum value of the function f(x, y) = 3x - 2y. We are given the constraints: y ≥ 2 1 ≤ x ≤5 y ≤ x + 3

Linear Programming Find the minimum and maximum values by graphing the inequalities and finding the vertices of the polygon formed. Substitute the vertices into the function and find the largest and smallest values.

1 ≤ x ≤5 8 7 6 5 4 3 y ≥ 2 2 y ≤ x + 3 1 1 2 3 4 5

Linear Programming The vertices of the quadrilateral formed are: (1, 2) (1, 4) (5, 2) (5, 8) Plug these points into the function f(x, y) = 3x - 2y

Linear Programming f(x, y) = 3x - 2y

Linear Programming f(1, 4) = -5 minimum f(5, 2) = 11 maximum

Find the minimum and maximum value of the function f(x, y) = 4x + 3y We are given the constraints: y ≥ -x + 2 y ≤ x + 2 y ≥ 2x -5

y ≥ 2x -5 6 5 4 y ≥ -x + 2 3 2 1 1 2 3 4 5

Vertices f(x, y) = 4x + 3y f(0, 2) = 4(0) + 3(2) = 6

Linear Programming f(0, 2) = 6 minimum f(4, 3) = 25 maximum