Dynamic Transmission of Protein Allostery without Structural Change: Spatial Pathways or Global Modes?  Tom C.B. McLeish, Martin J. Cann, Thomas L. Rodgers 

Slides:



Advertisements
Similar presentations
Volume 107, Issue 9, Pages (November 2014)
Advertisements

Molecular Analysis of the Interaction between Staphylococcal Virulence Factor Sbi-IV and Complement C3d  Ronald D. Gorham, Wilson Rodriguez, Dimitrios.
Imaging the Migration Pathways for O2, CO, NO, and Xe Inside Myoglobin
Philippe Derreumaux, Tamar Schlick  Biophysical Journal 
Yinghao Wu, Barry Honig, Avinoam Ben-Shaul  Biophysical Journal 
Volume 109, Issue 7, Pages (October 2015)
Simulations of HIV Capsid Protein Dimerization Reveal the Effect of Chemistry and Topography on the Mechanism of Hydrophobic Protein Association  Naiyin.
A Dynamics Criterion to Determine Allostery
Maik Goette, Martin C. Stumpe, Ralf Ficner, Helmut Grubmüller 
Shaogui Wu, Laicai Li, Quan Li  Biophysical Journal 
Olivier Fisette, Stéphane Gagné, Patrick Lagüe  Biophysical Journal 
SAXS versus FRET: A Matter of Heterogeneity?
Volume 106, Issue 8, Pages (April 2014)
Daniel M. Freed, Peter S. Horanyi, Michael C. Wiener, David S. Cafiso 
Christopher Wostenberg, W.G. Noid, Scott A. Showalter 
Phase Transitions in Biological Systems with Many Components
Antarip Halder, Rohit Roy, Dhananjay Bhattacharyya, Abhijit Mitra 
How Does Protein Architecture Facilitate the Transduction of ATP Chemical-Bond Energy into Mechanical Work? The Cases of Nitrogenase and ATP Binding-Cassette.
Supriyo Bhattacharya, Nagarajan Vaidehi  Biophysical Journal 
Po-Chao Wen, Emad Tajkhorshid  Biophysical Journal 
Volume 108, Issue 6, Pages (March 2015)
Liqun Zhang, Susmita Borthakur, Matthias Buck  Biophysical Journal 
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
Simulations of HIV Capsid Protein Dimerization Reveal the Effect of Chemistry and Topography on the Mechanism of Hydrophobic Protein Association  Naiyin.
Mechanism of the αβ Conformational Change in F1-ATPase after ATP Hydrolysis: Free- Energy Simulations  Yuko Ito, Mitsunori Ikeguchi  Biophysical Journal 
EPR Spectroscopy Targets Structural Changes in the E
Volume 98, Issue 2, Pages (January 2010)
Brittny C. Davis, Jodian A. Brown, Ian F. Thorpe  Biophysical Journal 
Anindita Dutta, Ivet Bahar  Structure 
Joe G. Greener, Ioannis Filippis, Michael J.E. Sternberg  Structure 
Molecular-Dynamics Simulations of the ATP/apo State of a Multidrug ATP-Binding Cassette Transporter Provide a Structural and Mechanistic Basis for the.
Janin Glaenzer, Martin F. Peter, Gavin H. Thomas, Gregor Hagelueken 
Volume 96, Issue 7, Pages (April 2009)
Power Dissipation in the Subtectorial Space of the Mammalian Cochlea Is Modulated by Inner Hair Cell Stereocilia  Srdjan Prodanovic, Sheryl Gracewski,
Nucleotide Effects on the Structure and Dynamics of Actin
Ligand Binding to the Voltage-Gated Kv1
Volume 103, Issue 6, Pages (September 2012)
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Protein-Protein Docking: From Interaction to Interactome
Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter- nucleosome Interaction  Ruihan Zhang, Jochen Erler, Jörg Langowski  Biophysical.
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Replica Exchange Molecular Dynamics Simulations Provide Insight into Substrate Recognition by Small Heat Shock Proteins  Sunita Patel, Elizabeth Vierling,
Rita Pancsa, Daniele Raimondi, Elisa Cilia, Wim F. Vranken 
Protein Grabs a Ligand by Extending Anchor Residues: Molecular Simulation for Ca2+ Binding to Calmodulin Loop  Chigusa Kobayashi, Shoji Takada  Biophysical.
Volume 107, Issue 9, Pages (November 2014)
Volume 77, Issue 1, Pages (July 1999)
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Dynamics of the BH3-Only Protein Binding Interface of Bcl-xL
Chi H. Mak, Tyler Matossian, Wen-Yeuan Chung  Biophysical Journal 
Min Wang, Mary Prorok, Francis J. Castellino  Biophysical Journal 
Volume 80, Issue 1, Pages (January 2001)
Volume 99, Issue 1, Pages (July 2010)
Martin Held, Philipp Metzner, Jan-Hendrik Prinz, Frank Noé 
Mechanism of Anionic Conduction across ClC
Volume 111, Issue 11, Pages (December 2016)
Nevra Ozer, Celia A. Schiffer, Turkan Haliloglu  Biophysical Journal 
Volume 113, Issue 3, Pages (August 2017)
Modelling Toehold-Mediated RNA Strand Displacement
Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, III: Molecular Dynamics Simulation Incorporating a.
Insights from Free-Energy Calculations: Protein Conformational Equilibrium, Driving Forces, and Ligand-Binding Modes  Yu-ming M. Huang, Wei Chen, Michael J.
Xiaodong Pang, Huan-Xiang Zhou  Biophysical Journal 
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
Yinghao Wu, Barry Honig, Avinoam Ben-Shaul  Biophysical Journal 
Wenzhe Ma, Chao Tang, Luhua Lai  Biophysical Journal 
Volume 98, Issue 2, Pages (January 2010)
Joana Pinto Vieira, Julien Racle, Vassily Hatzimanikatis 
Demian Riccardi, Qiang Cui, George N. Phillips  Biophysical Journal 
Gennady V. Miloshevsky, Peter C. Jordan  Biophysical Journal 
Volume 98, Issue 3, Pages (February 2010)
The NorM MATE Transporter from N
Presentation transcript:

Dynamic Transmission of Protein Allostery without Structural Change: Spatial Pathways or Global Modes?  Tom C.B. McLeish, Martin J. Cann, Thomas L. Rodgers  Biophysical Journal  Volume 109, Issue 6, Pages 1240-1250 (September 2015) DOI: 10.1016/j.bpj.2015.08.009 Copyright © 2015 Biophysical Society Terms and Conditions

Figure 1 (Ribbon diagram) Crystal structure of CAP homodimer determined at 1.48 Å resolution (PDB: 4HZF) with the cAMP ligand bound (in ball-and-stick representation). To see this figure in color, go online. Biophysical Journal 2015 109, 1240-1250DOI: (10.1016/j.bpj.2015.08.009) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 2 The modified two-rod model of fluctuation allostery in which the degree of freedom of mutual displacement x, and rotation θ, of the rods is supplemented with a bending angle at their midpoint ϕ. Binding events by substrates at the extremities of the rod-pair is modeled by a modification to their interaction potential at those points. The spring constants λi are indicated for each location i. The binding of small molecules at the positions of springs λ1 and λ2 is modeled by modifying the local spring constants by a factor δ. To see this figure in color, go online. Biophysical Journal 2015 109, 1240-1250DOI: (10.1016/j.bpj.2015.08.009) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 3 Allosteric free energy ΔΔG from Eq. 12 in terms of the dimensionless bending constant, μ, of the two-rod model. The legend gives the values of the four different values of δ, the change of local stiffness on binding. The limiting values for simple stiff rods are recovered at high stiffness. To see this figure in color, go online. Biophysical Journal 2015 109, 1240-1250DOI: (10.1016/j.bpj.2015.08.009) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 4 Correlated motions in ENMs for apo-GlxR (a) (dashed ellipse indicates a region of intermonomer correlation; see text), holo1-GlxR (b), and holo2-GlxR (c). Both the x and y axes represent amino-acid numbers in CAP for the first (1–220) and the second (221–440) cAMP-binding monomer. (b and c) Residues beyond 440 correspond to the ENM representation of the cAMP molecule itself (dashed ellipses). The color chart represents the degree of correlation and anticorrelation in motion. To see this figure in color, go online. Biophysical Journal 2015 109, 1240-1250DOI: (10.1016/j.bpj.2015.08.009) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 5 A real-space representation of the correlations in apo-GlxR from Fig. 4. (Red indicates correlated, blue is anticorrelated, and white is uncorrelated motion, with respect to the chosen reference residue.) For (a)–(f), the reference residue and bound state of the dimer is given: (a) 127 apo, (b) 127 holo-1, (c) 127 holo-2, (d) 71 apo, (e) 82 apo, and (f) 82 holo-1. The green circle shows the correlated residue in each case. To see this figure in color, go online. Biophysical Journal 2015 109, 1240-1250DOI: (10.1016/j.bpj.2015.08.009) Copyright © 2015 Biophysical Society Terms and Conditions