Complex Langevin analysis of the spontaneous rotational symmetry breaking in the dimensionally-reduced super-Yang-Mills models Takehiro Azuma (Setsunan.

Slides:



Advertisements
Similar presentations
A method of finding the critical point in finite density QCD
Advertisements

Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
Euclidean Wilson loops and Riemann theta functions M. Kruczenski Purdue University Based on: arXiv: (w/ R. Ishizeki, S. Ziama) Great Lakes 2011.
1 Superstring vertex operators in type IIB matrix model Satoshi Nagaoka (KEK) with Yoshihisa Kitazawa (KEK & Sokendai) String Theory and Quantum Field.
1 Lattice Formulation of Two Dimensional Topological Field Theory Tomohisa Takimi (RIKEN,Japan) K. Ohta, T.T Prog.Theor. Phys. 117 (2007) No2 [hep-lat.
A new continuum limit for the one matrix model
Putting M theory on computer Jun Nishimura KEK & Graduate University for Advanced Studies (SOKENDAI) based on collaboration with Konstantinos Anagnostopoulos.
Infra-red Quantum Effects in de Sitter Space Yoshihisa Kitazawa KEK Theory Center and Sokendai H. Kitamoto and Y.K. arXiv:1012:5930.
String theoretic QCD axions in the light of PLANCK and BICEP2 Kiwoon CosKASI Conference, April 16, 2014 KC, K.S. Jeong and M.S. Seo, arXiv:
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
Recent developments in the type IIB matrix model Jun Nishimura (KEK & SOKENDAI) 8-15 September, 2013 “Workshop on Noncommutative Field Theory and Gravity”
4.4 Solving Exponential and Logarithmic Equations.
The false vacuum bubble : - formation and evolution - in collaboration with Chul H. Lee(Hanyang), Wonwoo Lee, Siyong Nam, and Chanyong Park (CQUeST) Based.
Infrared gluons in the stochastic quantization approach Lattice20081 Contents 1.Introduction 2.Method: Stochastic gauge fixing 3.Gluon propagators 4.Numerical.
Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions Talk at KEK for String Advanced Lectures,
Monte Carlo simulations of a supersymmetric matrix model of dynamical compactification in nonperturbative string theory Konstantinos N. Anagnostopoulos,
Schwarzschild Radius and Black Hole Thermodynamics with Corrections from Simulations of SUSY Matrix Quantum Mechanics Talk at “Black Holes and Quantum.
Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions Seminar at University of Tokyo,
1 AdS/CFT correspondence and generation of space-time in Matrix models March at KEK Hikaru Kawai arXiv: , , with T. Suyama arXiv: ,
Monte Carlo Approach to String Theory An Overview Jun Nishimura KEK & Graduate University for Advanced Studies (SOKENDAI) Seminar at CQUEST, Sogang Univ.
Large N reduction and supersymmetry MCFP Workshop on Large N Gauge Theories, May 13-15, 2010, University of Maryland, College Park Jun Nishimura (KEK Theory.
Does 4d space-time emerge dynamically from the IKKT matrix model ? Numerical Approaches to AdS/CFT, Large N and Gravity, Sep 28-Oct 2, 2009, Imperial College,
Jun Nishimura (KEK Theory Center, SOKENDAI)
Emergence of space, general relativity and gauge theory from tensor models Naoki Sasakura Yukawa Institute for Theoretical Physics.
Monte Carlo Studies of Dynamical Compactification of Extra Dimensions in a Model of Non-perturbative String Theory Takehiro Azuma (Setsunan Univ.) JPS.
Recent developments in Monte Carlo studies of superstring theory Jun Nishimura (KEK & SOKENDAI) August, 2013 “Current Themes in High Energy Physics.
Pion Correlators in the ε- regime Hidenori Fukaya (YITP) collaboration with S. Hashimoto (KEK) and K.Ogawa (Sokendai)
9/10/2007Isaac Newton Institute1 Relations among Supersymmetric Lattice Gauge Theories So Niels Bohr Institute based on the works arXiv:
1 Superstring vertex operators in type IIB matrix model arXiv: [hep-th], [hep-th] Satoshi Nagaoka (KEK) with Yoshihisa Kitazawa (KEK &
Simulating Superstrings inside a Black Hole Nov.1, ’08, RIKEN workshop “New Developments in Gauge Theory Driven by Numerical Simulation” Jun Nishimura.
Precision test of the gauge/gravity duality from first principles IPMU Focus Week “Condensed Matter Physics Meets High Energy Physics”, IPMU, Univ. of.
Takehiro Azuma (Setsunan Univ.) with Konstantinos N. Anagnostopoulos and Jun Nishimura Tea Duality seminar at TIFR, 10:00-11:00 Dec. 31, 2015 Monte Carlo.
A nonperturbative definition of N=4 Super Yang-Mills by the plane wave matrix model Shinji Shimasaki (Osaka U.) In collaboration with T. Ishii (Osaka U.),
3D out of 9D ---the birth of our Universe from the superstring theory on computer string seminar at UBC Vancouver, Canada Nov. 5, 2012 Jun Nishimura (KEK.
Space-time picture suggested by the IIB matrix model YITP workshop “Discretization Approaches to the Dynanics of Space-time and Fields”, Sept.28, 2010.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
The origin of space-time as seen from matrix model simulations Seminar at KMI, Nagoya U., Nov. 8 (Tue.), 2011 Jun Nishimura (KEK,SOKENDAI) Ref.) M.Hanada,
Goro Ishiki (University of Tsukuba) arXiv: [hep-th]
DIRECT TEST OF THE ADS/CFT CORRESPONDENCE BY MONTE CARLO STUDIES OF N=4 SYM Asato Tsuchiya Shizuoka July 17, 2014.
複素ランジュバン法におけるゲージ・クーリングの 一般化とその応用 西村 淳 ( KEK 理論センター、総研大) 「離散的手法による場と時空のダイナミクス」研究会 2015 9月15日(火)@岡山 Ref.) J.N.-Shimasaki: arXiv: [hep-lat], Phys.Rev.
Path modification method for the sign problem
Monte Carlo Studies of Matrix Theory at Finite Temperature
Matter-antimatter coexistence method for finite density QCD
Large N Phase Transitions in massive N = 2 Gauge Theories
Lagrange Formalism & Gauge Theories
Numerical tests of the gauge-gravity duality and beyond
"Phase diagram of the GWW phase transition of the matrix quantum mechanics with a chemical potential" Takehiro Azuma (Setsunan Univ.) From Strings to LHC.
Opening remarks ---- Monte Carlo studies of Large N and SUSY
Path modification method for the sign problem
Jun Nishimura (KEK & SOKENDAI)
8.6 Solving Exponential & Logarithmic Equations
Magnetic supersymmetry breaking
Study of Aoki phase in Nc=2 gauge theories
Complex Langevin analysis of the spontaneous rotational symmetry breaking in the dimensionally-reduced super-Yang-Mills models Strings 2018, Jun 27th 2018.
String coupling and interactions in type IIB matrix model arXiv:0812
"Phase Transitions of a (Super) Quantum Mechanical Matrix Model with a Chemical Potential" (arXiv: ) Takehiro Azuma (Setsunan Univ.) JPS 73rd.
Non-lattice simulation of supersymmetric gauge theories as a probe to quantum black holes and strings Jun Nishimura (KEK) Plenary talk at LATTICE 2009,
Complex Langevin analysis of the spontaneous rotational symmetry breaking in the dimensionally-reduced super-Yang-Mills models (arXiv: ) Takehiro.
Jun Nishimura (KEK & SOKENDAI)
(ITEP, Moscow and JINR, Dubna)
Pavel Buividovich (Regensburg, Germany)
Monte Carlo studies of dynamical compactification of extra dimensions in a model of nonperturbative string theory Lattice 2015, Jul 15th 2015 (Wed) 18:30-21:00.
Jun Nishimura (KEK, SOKENDAI) JLQCD Collaboration:
Graviton Propagators in Supergravity and Noncommutative Gauge Theory
Complex Langevin analysis of the spontaneous rotational symmetry breaking in the Euclidean type IIB matrix model Takehiro Azuma (Setsunan Univ.) JPS 74th.
2. The type IIB matrix model 5. Result of D=6
Based on collaboration with Y. Kitazawa (KEK, SOKENDAI)
Bunkyo school building, University of Tsukuba,
Jun Nishimura (KEK, Sokendai) and Shinji Shimasaki (Keio Univ.)
Presentation transcript:

Complex Langevin analysis of the spontaneous rotational symmetry breaking in the dimensionally-reduced super-Yang-Mills models Takehiro Azuma (Setsunan Univ.) KEK-TH workshop 2017 Nov. 14 2017, 17:30-17:45 with Konstantinos N. Anagnostopoulos (NTUA), Yuta Ito (KEK), Jun Nishimura (KEK, SOKENDAI) and Stratos Kovalkov Papadoudis(NTUA)

1. Introduction Difficulties in simulating complex partition functions. Sign problem: The reweighting requires configs. exp[O(N2)] <*>0 = (V.E.V. for the phase-quenched partition function Z0)

2. The Euclidean IKKT model ⇒Promising candidate for nonperturbative string theory [N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, hep-th/9612115] ・Aμ, Ψα ⇒N×N Hermitian traceless matrices.  ・Eigenvalues of Aμ : spacetime coordinate⇒  =2 SUSY ・Originally defined in D=10. In the following, we consider the simplified Euclidean D=6 case.

2. The Euclidean IKKT model ・Integrating out ψ yields det  in D=6 (Pf in D=10) ・Det/Pf   's complex phase contributes to the Spontaneous Symmetry Breaking (SSB) of SO(D). ・Result of Gaussian Expansion Method (GEM) [T.Aoyama, J.Nishimura, and T.Okubo, arXiv:1007.0883、J.Nishimura, T.Okubo and F.Sugino, arXiv:1108.1293] SSB SO(6)→SO(3) (In D=10, too, SO(10)→SO(3)) Dynamical compactification to 3-dim spacetime.

3. Complex Langevin Method Complex Langevin Method (CLM) ⇒Solve the complex version of the Langevin equation. [Parisi, Phys.Lett. 131B (1983) 393, Klauder, Phys.Rev. A29 (1984) 2036] drift term ・ Aμ : Hermitian→general complex traceless matrices. ・ημ: Hermitian white noise obeying the probability distribution

3. Complex Langevin Method CLM does not work when it encounters these problems: Excursion problem: Aμ is too far from Hermitian ⇒Gauge Cooling minimizes the Hermitian norm (2) Singular drift problem: The drift term dS/d(Aμ)ji diverges due to   's near-zero eigenvalues. We trust CLM when the distribution p(u) of the drift norm falls exponentially as p(u)∝e-au. [K. Nagata, J. Nishimura and S. Shimasaki, arXiv:1606.07627] Look at the drift term ⇒ Get the drift of CLM!!

3. Complex Langevin Method Mass deformation [Y. Ito and J. Nishimura, arXiv:1609.04501] ・SO(D) symmetry breaking term Here, we take mμ=(0.5,0.5,1,2,4,8) Order parameters for SSB of SO(D): ・Fermionic mass term: Avoids the singular eigenvalue distribution of . Extrapolation (i) N→∞ ⇒(ii)εm→0 ⇒ (iii) mf→0.

4. Result 's distribution p(u) (log-log) reject trust N=24, mf=0.65 (i) N→∞ (εm,mf)=(0.25,0.65) faster than exponential N=40 N=24, mf=0.65 N=48 N=32 N=24 at large N

4. Result (ii) εm→0 after N→∞ mf=0.65 0.230(3) 0.227(13)

4. Result GEM (iii) mf→0 after εm→0 SO(3) SO(4) SO(5) 0.314(12) 0.287(24) ρ+=(ρ1+ρ2+ρ3)/3=0.300(16) 0.103(22) 0.028(23) ρ-=(ρ4+ρ5+ρ6)/3=0.052(3) 0.038(5) SSB SO(6) → at most SO(3)  Consistent with GEM.

5. Summary Dynamical compactification of the spacetime in the simplified Euclidean D=6 IKKT model. "Complex Langevin Method" ⇒trend of SSB SO(6)→SO(3). Future works Extension to D=10 Test various ideas ・Reweighting method [J. Bloch, arXiv:1701.00986] ・Other deformations than the mass deformation [Y. Ito, J. Nishimura, arXiv:1710.07929]