Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 17 (2005) Richard Cleve DC 3524 cleve@cs.uwaterloo.ca.

Slides:



Advertisements
Similar presentations
Quantum t-designs: t-wise independence in the quantum world Andris Ambainis, Joseph Emerson IQC, University of Waterloo.
Advertisements

Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
QMA/qpoly PSPACE/poly: De-Merlinizing Quantum Protocols Scott Aaronson University of Waterloo.
On the Amortized Complexity of Zero-Knowledge Proofs Ronald Cramer, CWI Ivan Damgård, Århus University.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 / RAC 2211 Lecture.
Quantum information as high-dimensional geometry Patrick Hayden McGill University Perspectives in High Dimensions, Cleveland, August 2010.
Short course on quantum computing Andris Ambainis University of Latvia.
Quantum Computing MAS 725 Hartmut Klauck NTU
Department of Computer Science & Engineering University of Washington
Superdense coding. How much classical information in n qubits? Observe that 2 n  1 complex numbers apparently needed to describe an arbitrary n -qubit.
The Goldreich-Levin Theorem: List-decoding the Hadamard code
CSEP 590tv: Quantum Computing
1 Recap (I) n -qubit quantum state: 2 n -dimensional unit vector Unitary op: 2 n  2 n linear operation U such that U † U = I (where U † denotes the conjugate.
1 Algorithms for Large Data Sets Ziv Bar-Yossef Lecture 13 June 22, 2005
Foundations of Cryptography Lecture 2 Lecturer: Moni Naor.
1 Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Richard Cleve QNC 3129 Lecture 18 (2014)
1 Introduction to Quantum Information Processing QIC 710 / CS 678 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 / QNC 3129 Lectures.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 16 (2011)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 2117 Lecture.
October 1 & 3, Introduction to Quantum Computing Lecture 2 of 2 Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 19 (2009)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Course.
October 1 & 3, Introduction to Quantum Computing Lecture 1 of 2 Introduction to Quantum Computing Lecture 1 of 2
Aug 2, Quantum Communication Complexity Richard Cleve Institute for Quantum Computing University of Waterloo.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
A limit on nonlocality in any world in which communication complexity is not trivial IFT6195 Alain Tapp.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 20 (2009)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Nawaf M Albadia
CSEP 590tv: Quantum Computing Dave Bacon July 20, 2005 Today’s Menu n Qubit registers Begin Quantum Algorithms Administrivia Superdense Coding Finish Teleportation.
Umans Complexity Theory Lectures Lecture 7b: Randomization in Communication Complexity.
1 Introduction to Quantum Information Processing CS 667 / Phys 767 / C&O 681 Richard Cleve DC 2117 Lecture 15 (2008)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Lecture.
Quantum Computing MAS 725 Hartmut Klauck NTU
Forrelation: A Problem that Optimally Separates Quantum from Classical Computing.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Richard Cleve DC 2117 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Lecture (2011)
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 2117 Lecture.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lectures
Pseudorandomness: New Results and Applications Emanuele Viola IAS April 2007.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Richard Cleve DC 3524 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Random Access Codes and a Hypercontractive Inequality for
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Encryption and Integrity
Information Complexity Lower Bounds
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 16 (2009) Richard.
New Characterizations in Turnstile Streams with Applications
Introduction to Quantum Computing Lecture 1 of 2
Unbounded-Error Classical and Quantum Communication Complexity
CS 154, Lecture 6: Communication Complexity
Randomized Algorithms CS648
Quantum Information Theory Introduction
Imperfectly Shared Randomness
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 24 (2009) Richard.
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 18 (2009) Richard.
CS21 Decidability and Tractability
CS151 Complexity Theory Lecture 7 April 23, 2019.
Richard Cleve DC 2117 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Lecture 16 (2009) Richard.
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 4 (2005) Richard Cleve DC 653
Pseudorandomness: New Results and Applications
Richard Cleve DC 3524 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Presentation transcript:

Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 17 (2005) Richard Cleve DC 3524 cleve@cs.uwaterloo.ca Course web site at: http://www.cs.uwaterloo.ca/~cleve/courses/cs467

Contents Communication complexity Lower bound for the inner product problem Simultaneous message passing and fingerprinting Hidden matching problem Nonlocality revisited

Communication complexity Lower bound for the inner product problem Simultaneous message passing and fingerprinting Hidden matching problem Nonlocality revisited

Inner product IP(x, y) = x1 y1 + x2 y2 +  + xn yn mod 2 Classically, (n) bits of communication are required, even for bounded-error protocols Quantum protocols also require (n) communication [KY ‘95] [CNDT ‘98] [NS ‘02]

The BV black-box problem Bernstein & Vazirani Let f(x1, x2, …, xn) = a1 x1 + a2 x2 +  + an xn mod 2 Given: 1 0  a1 an a2 b x1 xn x2  x2 b  f(x1, x2, …, xn) xn x1  H f H Goal: determine a1, a2 , …, an Classically, n queries are necessary Quantum mechanically, 1 query is sufficient

Lower bound for inner product IP(x, y) = x1 y1 + x2 y2 +  + xn yn mod 2 Proof: y1 yn y2 Alice and Bob’s IP protocol x2 x1 xn zIP(x, y) Alice and Bob’s IP protocol inverted y1 y2 yn x1 x2 xn z

Lower bound for inner product IP(x, y) = x1 y1 + x2 y2 +  + xn yn mod 2 0 0 0 1 Proof: x1 x2 xn H H H H Alice and Bob’s IP protocol Alice and Bob’s IP protocol inverted H H H H x1 x2 xn x1 x2 xn 1 Since n bits are conveyed from Alice to Bob, n qubits communication necessary (by Holevo’s Theorem)

Communication complexity Lower bound for the inner product problem Simultaneous message passing and fingerprinting Hidden matching problem Nonlocality revisited

Equality revisited in simultaneous message model x1x2  xn y1y2  yn Equality function: f (x,y) = 1 if x = y 0 if x  y f (x,y) Exact protocols: require 2n bits communication

Equality revisited in simultaneous message model x1x2  xn y1y2  yn classical correlations classical correlations Pr[00] = Pr[11] = ½ f (x,y) Bounded-error protocols with a shared random key: require only O(1) bits communication Error-correcting code: e(x) = 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 e(y) = 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 random k

Equality revisited in simultaneous message model x1x2  xn y1y2  yn Bounded-error protocols without a shared key: f (x,y) Classical: θ(n1/2) Quantum: θ(log n) [A ’96] [NS ’96] [BCWW ’01]

Quantum fingerprints Question 1: how many orthogonal states in m qubits? Answer: 2m Let  be an arbitrarily small positive constant Question 2: how many almost orthogonal* states in m qubits? (* where |xy| ≤  ) Answer: 22am, for some constant a > 0 Construction of almost orthogonal states: start with a suitable (classical) error-correcting code, which is a function e : {0,1}n  {0,1}cn where, for all x ≠ y, dcn ≤ Δ(e(x),e(y)) ≤ (1− d )cn (c, d are constants)

Construction of almost orthogonal states Set x for each x{0,1}n (log(cn) qubits) Then xy Since dcn ≤ Δ(e(x),e(y)) ≤ (1− d )cn, we have |xy| ≤ 1− 2d By duplicating each state, xx … x, the pairwise inner products can be made arbitrarily small: (1− 2d )r ≤  Result: m = r log(cn) qubits storing 2n = 2(1/c)2m/r different states (as opposed to n qubits!)

What are almost orthogonal states good for? Question 3: can they be used to somehow store n bits using only O(log n) qubits? Answer: NO—recall that Holevo’s theorem forbids this Here’s what we can do: given two states from an almost orthogonal set, we can distinguish between these two cases: they’re both the same state they’re almost orthogonal Question 4: How?

Quantum fingerprints H Let 000, 001, …, 111 be 2n states on O(log n) qubits such that |xy| ≤  for all x ≠ y Given xy, one can check if x = y or x ≠ y as follows: if x = y, Pr[output = 0] = 1 Intuition: 0xy + 1yx H S W A P x y 0 if x ≠ y, Pr[output = 0] = (1+ 2)/2 Note: error probability can be reduced to ((1+ 2)/2)r

Equality revisited in simultaneous message model x1x2  xn y1y2  yn Bounded-error protocols without a shared key: f (x,y) Classical: θ(n1/2) Quantum: θ(log n) [A ’96] [NS ’96] [BCWW ’01]

Quantum protocol for equality in simultaneous message model x1x2  xn y1y2  yn x y x y Recall that, with a shared key, the problem is easy classically ... Orthogonality test

Communication complexity Lower bound for the inner product problem Simultaneous message passing and fingerprinting Hidden matching problem Nonlocality revisited

Hidden matching problem For this problem, a quantum protocol is exponentially more efficient than any classical protocol—even with a shared key x  {0,1}n matching on {1, 2, …, n} Inputs: M = (i, j, xixj), such that (i, j)  M Output: Only one-way communication (Alice to Bob) is permitted [Bar-Yossef, Jayram, Kerenidis, 2004]

The hidden matching problem matching on {1,2, …, n} Inputs: x  {0,1}n Output: (i, j, xixj), (i, j)  M Classically, one-way communication is (n), even with a shared classical key (the proof is omitted here) Rough intuition: Alice doesn’t know which edges are in M, so she apparently has to send (n) bits of the form xixj …

The hidden matching problem matching on {1,2, …, n} Inputs: x  {0,1}n Output: (i, j, xixj), (i, j)  M Quantum protocol: Alice sends (log n qubits) Bob measures in i  j basis, (i, j)  M, and uses the outcome’s relative phase to determine xixj

Communication complexity Lower bound for the inner product problem Simultaneous message passing and fingerprinting Hidden matching problem Nonlocality revisited

Restricted-equality nonlocality x y inputs: (n bits) (n bits) a b outputs: (log n bits) (log n bits) Precondition: either x = y or (x,y) = n/2 Required postcondition: a = b iff x = y With classical resources, (n) bits of communication needed for an exact solution* With (00 + 11)log n prior entanglement, no communication is needed at all*  Technical details similar to restricted equality of Lecture 17 [BCT ‘99]

Restricted-equality nonlocality Bit communication: Cost: θ(n) Qubit communication: Cost: log n Bit communication & prior entanglement: Cost: zero Cost: zero Qubit communication & prior entanglement:

Nonlocality and communication complexity conclusions Quantum information affects communication complexity in interesting ways There is a rich interplay between quantum communication complexity and: quantum algorithms quantum information theory other notions of complexity theory …

THE END