Number Theory.

Slides:



Advertisements
Similar presentations
The Integers and Division. Outline Division: Factors, multiples Exercise 2.3 Primes: The Fundamental Theorem of Arithmetic. The Division Algorithm Greatest.
Advertisements

1 Section 2.4 The Integers and Division. 2 Number Theory Branch of mathematics that includes (among other things): –divisibility –greatest common divisor.
CSE115/ENGR160 Discrete Mathematics 03/13/12 Ming-Hsuan Yang UC Merced 1.
Number Theory and Cryptography
Fall 2002CMSC Discrete Structures1 Let us get into… Number Theory.
CS555Spring 2012/Topic 61 Cryptography CS 555 Topic 6: Number Theory Basics.
BY MISS FARAH ADIBAH ADNAN IMK
The Integers and Division
Divisibility October 8, Divisibility If a and b are integers and a  0, then the statement that a divides b means that there is an integer c such.
Number Theory and Cryptography
CSCI 1900 Discrete Structures
© by Kenneth H. Rosen, Discrete Mathematics & its Applications, Sixth Edition, Mc Graw-Hill, 2007 Chapter 3 (Part 2): The Fundamentals: Algorithms, the.
1 Properties of Integers Objectives At the end of this unit, students should be able to: State the division algorithm Apply the division algorithm Find.
9/2/2015Discrete Structures1 Let us get into… Number Theory.
© by Kenneth H. Rosen, Discrete Mathematics & its Applications, Sixth Edition, Mc Graw-Hill, 2007 Chapter 3 (Part 3): The Fundamentals: Algorithms, the.
February 24, 2015Applied Discrete Mathematics Week 4: Number Theory 1 Modular Arithmetic Let a be an integer and m be a positive integer. We denote by.
3.4/3.5 The Integers and Division/ Primes and Greatest Common Divisors Let each of a and b be integers. We say that a divides b, in symbols a | b, provided.
MATH 224 – Discrete Mathematics
CompSci 102 Discrete Math for Computer Science February 16, 2012 Prof. Rodger.
Chapter Integers and Algorithms Representations of integers
Number Theory 이재원 School of Information Technology Sungshin W. University.
Chapter 2 (Part 1): The Fundamentals: Algorithms, the Integers & Matrices The Integers and Division (Section 2.4)
Foundations of Discrete Mathematics Chapter 4 By Dr. Dalia M. Gil, Ph.D.
Chinese Remainder Theorem. How many people What is x? Divided into 4s: remainder 3 x ≡ 3 (mod 4) Divided into 5s: remainder 4 x ≡ 4 (mod 5) Chinese Remainder.
Module #9 – Number Theory 1/5/ Algorithms, The Integers and Matrices.
Application: Algorithms Lecture 20 Section 3.8 Wed, Feb 21, 2007.
Greatest Common Divisors & Least Common Multiples  Definition 4 Let a and b be integers, not both zero. The largest integer d such that d|a and d|b is.
Foundations of Computing I CSE 311 Fall Review: Division Theorem Let a be an integer and d a positive integer. Then there are unique integers q.
Discrete Mathematics 4. NUMBER THEORY Lecture 7 Dr.-Ing. Erwin Sitompul
Discrete Mathematics
1 Discrete Structures – CNS2300 Text Discrete Mathematics and Its Applications Kenneth H. Rosen (5 th Edition) Chapter 2 The Fundamentals: Algorithms,
Application: Algorithms Lecture 19 Section 3.8 Tue, Feb 20, 2007.
Divisibility and Modular Arithmetic
1 Discrete Structures – CNS2300 Text Discrete Mathematics and Its Applications Kenneth H. Rosen (5 th Edition) Chapter 2 The Fundamentals: Algorithms,
Ch04-Number Theory and Cryptography 1. Introduction to Number Theory Number theory is about integers and their properties. We will start with the basic.
Module #9 – Number Theory 6/11/20161 Chapter 3 Algorithms, Integers and Matrices.
Chapter 4 With Question/Answer Animations 1. Chapter Motivation Number theory is the part of mathematics devoted to the study of the integers and their.
Number Theory Lecture 1 Text book: Discrete Mathematics and its Applications, 7 th Edition.
Fuw-Yi Yang1 Textbook: Introduction to Cryptography 2nd ed. By J.A. Buchmann Chap 1 Integers Department of Computer Science and Information Engineering,
Chapter 3 The Fundamentals: Algorithms, the integers, and matrices Section 3.4: The integers and division Number theory: the part of mathematics involving.
Number Theory. Introduction to Number Theory Number theory is about integers and their properties. We will start with the basic principles of divisibility,
The Euclidean Algorithm
CS 210 Discrete Mathematics The Integers and Division (Section 3.4)
CSE15 Discrete Mathematics 03/15/17
Integers and Division Section 3.4.
CMSC Discrete Structures
CSE 504 Discrete Mathematics & Foundations of Computer Science
Number Theory and Cryptography
MATH301- DISCRETE MATHEMATICS Copyright © Nahid Sultana Dr. Nahid Sultana Chapter 4: Number Theory and Cryptography.
Applied Discrete Mathematics Week 3: Algorithms
Applied Discrete Mathematics Week 4: Number Theory
Applied Discrete Mathematics Week 4: Number Theory
Number Theory.
Topic 6: Number Theory Basics
Foundations of Discrete Mathematics
Enough Mathematical Appetizers!
Week #5 – 23/25/27 September 2002 Prof. Marie desJardins
刘振 上海交通大学 计算机科学与工程系 电信群楼3-509
Discrete Mathematics and its Applications
CMSC 203, Section 0401 Discrete Structures Fall 2004 Matt Gaston
Representations of Integers
Copyright © Zeph Grunschlag,
Application: Algorithms
Application: Algorithms
Divisibility and Modular Arithmetic
Applied Discrete Mathematics Week 10: Introduction to Counting
Number Theory.
Discrete Mathematics Chapter 4 Number Theory. Discrete Mathematics Chapter 4 Number Theory.
Number Theory and Cryptography
Presentation transcript:

Number Theory

CMSC 203 - Discrete Structures Congruences Let a and b be integers and m be a positive integer. We say that a is congruent to b modulo m if m divides a – b. We use the notation a  b (mod m) to indicate that a is congruent to b modulo m. In other words: a  b (mod m) if and only if a mod m = b mod m. Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Congruences Examples: Is it true that 46  68 (mod 11) ? Yes, because 11 | (46 – 68). Is it true that 46  68 (mod 22)? Yes, because 22 | (46 – 68). For which integers z is it true that z  12 (mod 10)? It is true for any z{…,-28, -18, -8, 2, 12, 22, 32, …} Theorem: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km. Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Congruences Theorem: Let m be a positive integer. If a  b (mod m) and c  d (mod m), then a + c  b + d (mod m) and ac  bd (mod m). Proof: We know that a  b (mod m) and c  d (mod m) implies that there are integers s and t with b = a + sm and d = c + tm. Therefore, b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) and bd = (a + sm)(c + tm) = ac + m(at + cs + stm). Hence, a + c  b + d (mod m) and ac  bd (mod m). Fall 2002 CMSC 203 - Discrete Structures

The Euclidean Algorithm The Euclidean Algorithm finds the greatest common divisor of two integers a and b. For example, if we want to find gcd(287, 91), we divide 287 by 91: 287 = 913 + 14 We know that for integers a, b and c, if a | b and a | c, then a | (b + c). Therefore, any divisor of 287 and 91 must also be a divisor of 287 - 913 = 14. Consequently, gcd(287, 91) = gcd(14, 91). Fall 2002 CMSC 203 - Discrete Structures

The Euclidean Algorithm In the next step, we divide 91 by 14: 91 = 146 + 7 This means that gcd(14, 91) = gcd(14, 7). So we divide 14 by 7: 14 = 72 + 0 We find that 7 | 14, and thus gcd(14, 7) = 7. Therefore, gcd(287, 91) = 7. Fall 2002 CMSC 203 - Discrete Structures

The Euclidean Algorithm In pseudocode, the algorithm can be implemented as follows: procedure gcd(a, b: positive integers) x := a y := b while y  0 begin r := x mod y x := y y := r end {x is gcd(a, b)} Fall 2002 CMSC 203 - Discrete Structures

Representations of Integers Let b be a positive integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form: n = akbk + ak-1bk-1 + … + a1b + a0, where k is a nonnegative integer, a0, a1, …, ak are nonnegative integers less than b, and ak  0. Example for b=10: 859 = 8102 + 5101 + 9100 Fall 2002 CMSC 203 - Discrete Structures

Representations of Integers Example for b=2 (binary expansion): (10110)2 = 124 + 122 + 121 = (22)10 Example for b=16 (hexadecimal expansion): (we use letters A to F to indicate numbers 10 to 15) (3A0F)16 = 3163 + 10162 + 15160 = (14863)10 Fall 2002 CMSC 203 - Discrete Structures